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Abstract: Improving the ability to model, manage and communicate the impact of uncertainty in complex
interacting systems is becoming increasingly important. This is particularly important for defence as the na-
ture of warfare is rapidly changing due to the incursion of novel defence technologies. The dominant attribute
of modern warfare is its network-centric characteristic, which can be both an enabling and a limiting factor.
Network-centric warfare refers to a potentially large number of entities or assets with varying capabilities
for autonomous decision making whose coordinated fighting power is enabled through information exchange
within a constrained system structure that can be described in terms of interacting networks. Such networks
are known to be able to exhibit complex behaviours such as rapid phase transitions, oscillations, chaos, distur-
bance rejection, and adaptation. Understanding the potential for complex behaviours associated with particular
military operations is essential to establish appropriate simulation and data collection processes that inform
decisions about force design and asset acquisition. To explore these concepts in an unclassified manner, this
project developed a bushfire emergency response simulator as a surrogate for similar Defence problems.

This paper describes our multi-agent simulation design which is intended to capture key dynamic characteris-
tics of emergency response operations including individual fire response asset behaviours and team hierarchies
in perception and decision making. This new bushfire emergency response simulator includes assets to be pro-
tected, command and control assets, fixed and mobile sensing assets, and assets within the response team
with perception, decision, action and communication capabilities and with different capabilities to move and
fight the fire. A new cellular automata type bushfire model with dynamical cell interactions considering fuel
and wind is introduced, that enables simulation of a greater range of fire behaviours with higher fidelity, than
simple cellular automata models.

Figure 1. Simplified operational context diagram of bushfire emergency
response.

This is the second in a se-
ries of papers describing bush-
fire emergency response sim-
ulation as a surrogate for De-
fence problems to explore the
quantification of uncertainty
in modelling, simulation and
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This paper describes in further
detail the bushfire emergency
response simulator which was
applied to uncertainty quan-
tification in Bruggemann et al.
(2019).
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1 INTRODUCTION

Understanding complex interacting systems by quantifying uncertainty in different situations and analyzing
how uncertainties interact is becoming an increasingly important part of making decisions about developing
and shaping future defence capability. New simulation tools are needed to model, manage and communicate
the impact of uncertainty in complex dynamical systems modelling, simulations and analysis. A bushfire
emergency response simulator is proposed and developed in this project as an unclassified surrogate for similar
defence problems.

An early simulator of bushfires and fire fighting was the Fire Chief microworld generating program for studying
human decision making (Omodei and Wearing (1995)). RescueModel was the first multi-agent simulation
for bushfire emergency response and was adapted from a military operations simulator (Au et al. (2000)).
It incorporates the environment, fire spread, and agent-based tactics and decisions and has been used for
analyzing agent architectures including access to the environment, team work and command and control.

In past years numerous tools have been developed using agent-based models and multi-agent systems for
planning and tactical decision making in evacuation and disaster or emergency response (Hu et al. (2012);
HoseinDoost et al. (2019); Shahparvari et al. (2016); Singh and Padgham (2017); Hawe et al. (2012); Gonzalez
(2009); Padgham et al. (2014); Intini et al. (2019); Massaguer et al. (2006)). These also include decision
support systems for bush fire fighting and prevention, which combines environmental simulation with multi-
agent systems to present results of different decisions for decision-maker evaluation (Engelmann and Fiedrich
(2007); Jaber et al. (2001)). In addition to emergency response support tools there exists bushfire spread
simulators used specifically to aid in the prediction and management of bushfires such as PHOENIX Rapidfire
(Tolhurst et al. (2008)), AUSTRALIS (Johnston et al. (2008)), and SPARK (Miller et al. (2015)). Bushfire
spread simulators can be used to model a bushfire’s spatial and temporal characteristics in different scenarios
including and model the environment, fire behaviour, wind, terrain, fuel, and asset impact models enabling
predictions, statistics and visualization of bushfire spread to aid decision makers (Miller et al. (2015); Sullivan
(2009)).

Since RescueModel, there are few simulation tools for bushfire emergency response that captures dynamical
interactions between a fire fighting team, support assets and a bushfire threat. In contrast to RescueModel,
our simulator is intended for addressing uncertainty and complexity (see Bruggemann et al. (2019) for an
example of the simulator applied to uncertainty quantification). As part of the emergency response simula-
tion, we present a fire spread model based on a grid cellular automata (CA) approach which is simpler and
computationally faster than continuous models (Hilton et al. (2018)), since it is intended to characterize the
global behaviour of bushfire threats in response to fuel and wind stimulus, over a wide area. In CA for fire
spread models, cell states are typically discrete and cell to cell dynamics are governed by simple deterministic
or probabilistic rules (Alexandridis et al. (2008); Yongzhong et al. (2005); Liu et al. (2018)). By contrast, in
our approach the cell states are bounded continuous and the cell behaviours and interactions are governed by
a differential equation and its parameters. We propose the logistic function as a way to model the continuous
change in temperature and fuel in each cell, that allows simulation of a greater range of fire threat behaviours
with higher fidelity than simple models. The fire model may be tuned to match experimental data via the
model parameters. Cell to cell dynamics are deterministic but stochasticity can be introduced via stochastic
inputs such as the wind.

2 MISSION AND OPERATIONAL ENVIRONMENT DEFINITION

Fig. 1 presents a simplified operational context diagram of bushfire emergency response. We consider the mis-
sion to include a Bushfire Response Team (BRT) fighting a Bushfire Threat (BFT): Spot bushfires can occur
at any location within the considered area of operations. The area is characterised by its fuel distribution and
topography. The fire is also affected by wind direction and speed; Defended Assets (DAs) are ground-based
assets that are vulnerable to the BFT. They may or may not have fire-fighting capabilities. Ground-based
Sensing Units (GSUs) are sensors are spatially distributed over the area of operations, They provide local
high-resolution information related to the state of the BFT and wind. Space-based Sensing Units (SSUs) are
satellite-like sensors that can provide global information related to the state of the BFT and response team at
specific times. Namely, they may provide a service under a limited availability, at specific times, and maybe
limited by atmospheric conditions. Global Command and Control Units (GC2) are global command and con-
trol (C2) units that set the BFT response strategy and provides execution plans for the different response teams
and units. Aerial-response Units (ARUs) have sensing capability as well as the capability to extinguish the fire.
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These units provide localised high-power fire-fighting capability. These units communicate with the GC2 unit.
Local Response C2 Units (LC2s) are mobile local C2 units that communicate with their associated fire-fighting
response units and also the global C2 unit. These units set the BFT strategy and provide execution plans for
their assigned ground-based response units at the local level. Ground-based Response Units (GRUs) are mo-
bile units with local fire-sensing as well as local low-power fire-fighting capabilities. GRUs can communicate
with LC2 to which they are assigned and have local decision making capabilities.

2.1 Environment and Threat Model

The threat environment is modelled as a two-dimensional spatial grid of cells defined by rows and columns
X = {1, 2, ..., xmax} and Y = {1, 2, ..., ymax}, and cells are identified by their cell coordinates i ∈ X ,
j ∈ Y . The bushfire threat is modelled as cells each having a temperature T , fuel level F and wind vector wv

state.To each cell ij is associated the dynamical state-space model:

Ṫij =


θ1Tij(1− Tij) +

∑8
k=1 θ

−1
5 (ukij) ((1− Sw) ∨ Ik(wv)) if Fij > θ2,W = 0

−θ13Tij if W = 1

−θ3Tij otherwise,
(1)

Ḟij = −θ4 Tij Fij , (2)

The first term in (1) is an autonomous logistic model which has two equilibria: T̄ij = 0 and T̄ij = 1.
If the initial temperature is in the range Tij ∈ [0, 1] then the temperature will tend asymptotically to 1,
and θ1 ∈ R≥0 determines the rate of temperature increase, provided that there is enough fuel (Fij > θ2
where θ2 ∈ [0, 1] is minimum fuel required to trigger temperature increase) and the cell is not wet
(cell wetness W=0). The second term in (1) is a forcing term which ignites the fire (temporarily tran-
sitions the state Tij from 0 to a positive value) depending upon the net temperature of the 8 adjacent
cells. Ck with k = {1, 2, 3, 4, 5, 6, 7, 8} are the 8 neighbouring cells of the cell i, j, shown in Fig.
2. Ignition from neighbour cells is modelled by u1ij , θ7µ(Ti+1,j − θ6), u2ij , θ7µ(Ti−1,j − θ6),
u3ij , θ7µ(Ti,j−1 − θ6), u4ij , θ7µ(Ti,j+1 − θ6), u5ij , θ7µ(Ti+1,j−1 − θ6), u6ij , θ7µ(Ti+1,j+1 − θ6),
u7ij , θ7µ(Ti−1,j−1−θ6), u8ij , θ7µ(Ti−1,j+1−θ6), where µ(·) is the Heaviside unit-step function, θ6 ∈ R≥0

is the sensitivity of a cell’s temperature to its neighbours, θ7 ∈ R≥0 is the amplitude of an ignition pulse.

Figure 2. BFT Grid
representation with wind vector

wv shown.

Here Sw is binary where Sw = 0 represents the case of no wind present
and Sw = 1 represents the case of wind present; and wv is a wind vector
with wind speed rw centred at the cell i, j whose direction aligns with the
cell’s wind direction β. Then, depending on which cell the vector points
to, it can trigger the ignition of a neighbour cell, for example i + 1, j + 1
as shown in Fig. 2. That is, Ik(wv) , 1 if wv points to cell k ∈ Ck and 0
otherwise.

Other parameters for fire behaviour include θ3 which is the rate of temper-
ature decrease if F ≤ θ2 and cell wetness W = 0, θ4 is the rate of fuel
burn, θ5 is the rate of decay of the ignition pulses. A water effectiveness
parameter θ13 is the rate of temperature decrease if water is applied. As T
goes to 1, the fuel starts burning and the amount of fuel reduces with an ex-
ponential decay with time constant θ−1

4 . Once reached, the cell will remain
at T = 1 until the fuel is consumed below a threshold θ2. This condition
results in a model switch with an exponential decay of the temperature of
the cell with time constant θ−1

3 .
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Figure 3. Fuel and Temperature
of two neighbouring cells.

How fire propagates between neighbouring cells is illustrated by Fig. 3
which shows the temperature and fuel curves for two neighbouring cells.
Initially, the amount of fuel in each cell is F = 0.7 and temperature T = 0.
After cell one is ignited to T = 0.3, the second cell is ignited shortly after
and the temperature in both cells increases as the fuel decreases. When
the fuel drops below F = θ2 = 0.05 the temperature decreases. A fire
simulation is presented in Fig. 4 which shows the fire temperature at 70
seconds. This simulation was initialized with two spot fires and uniformly
distributed fuel.
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2.2 Generic Agent Model

The simulation includes a bush fire threat interacting with a team of assets.The assets are modelled as a set
of agents A being independent entities acting under perception P , decision D and action U and commu-
nication C programs. Four different types of agents are considered including command and control-only
agents Agc2 = {Pgc2, Dgc2, Cgc2}, fighting response units Agru = {Pgru, Dgru, Ugru, Cgru}, sensing units
Agsu = {Pgsu, Cgsu} and defended assets Ada.
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Figure 4. Temperature at 70 seconds with uniform
fuel and random wind directions.

The agents are modelled as a simple reflex agents
which act only upon the current perception states and
follows condition-action rules (Wooldridge (2009)).

Fig. 5 represents GC2, GSU and GRU agents and
their interactions with the fire threat and environ-
ment and each other. GRU and GSU perceptions of
the threat and environment are via direct sensing but
GCU perception of the threat and environment is via
communication with GRU and GSU. GC2 can com-
mand GRU agents which can move in the environ-
ment and deploy water on the fire.

States, parameters and models common to all agents
are described next, followed by the states, parame-
ters and models unique to each agent type.

States and Parameters: States common to all
agents include xgen = [a, x, y] with availability
a ∈ {0, 1} and location (x, y) ∈ R. A parameter common to all agents is θgen = δdanger ∈ [0, 1] which
is a temperature threshold above which an asset will be burnt by fire i.e. a = 0 if T > δdanger. Additional
states and parameters are described in the following models.

Figure 5. GC2, GSU and GRU agents and their interactions with the fire
threat and environment and each other.

Sensor: A threat is defined
as a cell having a tempera-
ture exceeding a threat thresh-
old δthreat ∈ [0, 1]. It
is convenient to represent all
cells as a list T where and
c ∈ {1, ..., X × Y } indexes
a cell in the list. The sensor
model considers detection and
measurement of threats within
a sensing range rsense ∈
R≥0 around an agent’s loca-
tion at (x, y). Let O be the
set of threats sensed by an
agent such that O = {c ∈
T |d(c, (x, y)) ≤ rsense, T̂ (c) > δthreat}, where d(c, (x, y)) is Euclidean distance between cell c and co-
ordinate (x, y), T̂ = T + vt is the cell temperature measurements assuming additive sensor noise vt.

Motion: The agent motion in the 2D plane was modelled by a simple car model (LaValle (2006)) with PID
feedback-controlled speed V ∈ [0, Vmax ∈ R≥0] and heading rate |ψ̇| ∈ [0, ψ̇max] to a movement goal
location (x, y)g ∈ R. Vmax and ψ̇max are speed and heading-rate constraints.

Communication: An adjacency list L was used to describe the possible interactions between agents, where
j ∈ L(i) if it is possible for agent i to interact with agent j, allowing simple modelling of communication
channels. Information received from other agents via communication is stored in C for each agent.

2.3 Agru Model

States: States are xgru = [xgen, ψ, w,O, I, (x, y)g, cg, cd, C] where w ∈ [0, 1] is water tank level, I are
sensed threat intensities, cg are target cells where water may be deployed, cd are cells to be defended (cells
where DA are located).
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Perception: Agru are equipped with a sensor that measures threats O. Threat data may also be received from
communication with a different agent j i.e.Ci = {Oj}. An agent’s perception from its own sensors and via
communication is then P = f({Oi, Oj}). Given that the objective is to protect a DA, we can define a “threat
intensity” I as being how close each sensed threat is to a DA, where I = (d(cd, cg))

−1
, cg ∈ {Oi, Oj}. Each

agent may have a different perception of threat intensities, depending on its location, sensing range and sensing
resolution.

Decision and Action: Agru decision logic activates agent behaviours on the basis of received information
or internal states. Decision making includes choosing movement goals (x, y)g and target goals cg ∈ O. For
example, to decide to target cells with the highest intensity, the decision rule might be to choose the cell cg ∈ O
with the largest intensity I . Decision logic about whether to engage or not is also governed by the amount of
water w and GRU availability, and whether or not the target is in range. Four modelled behaviours include (1)
Observe - monitor fires by its sensors; (2) Move to engage - move to (x, y)g to engage the fire; (3) Engage
- deploy water in a target cell cg when located within water range rwater ∈ R≥0, then w decreases at water
consumption rate Wloss; (4) Flee - retreat from any immediate danger T > δdanger that is within a safety
separation radius rsafety ∈ R≥0.

Parameters: Parameters are θgru = [θgen, Vmax, ψ̇max, δthreat, rsense, δdanger, rsafety, rwater,Wloss, vt].

2.4 Agc2 Model

States: xgc2 = [xgen, TO1..nmax
, C] where TO are tracked threat objects, nmax is the maximum number of

TO possible to be tracked.

Figure 6. Hierarchical feedback between GC2 and
GRU in protection of DA.

Perception: An Agc2 perceives the fire at a global
level, as a set of n threat objects TO1..n where each
TO is a cluster of cells. While response and sensing
agents perceive threats at a local level, as individual
cells, in essence, the TO can be considered models
of perceptive abstractions and are illustrated in Fig.
6. Dependency between high-level Ac2 perception
and low-level sensing or response unit perceptions
enables analysis of complex behaviours and tactical
and strategic decision strategies.

Perception is modelled by simulated threat detec-
tion, classification and tracking. Threat objects TO
are clusters of cells and are constructed by fusing
and classifying cell ID and temperature data received
by communication from the sensing and response
agents. The threat classification is by k-nearest
neighbour (Cunningham and Delany (2007)).

TheAgc2 then tracks the state of each TO which is TO = [a, xc, yc, ẋc, ẏc, ψc, |TO|, ˙|TO|,mean(Tk ∈ TO)]
where a is the availability of the TO, xc, yc is the centroid, ψc is the heading, |TO| is the size or number of
cells of the TO, and mean(Tk ∈ TO) is the average temperature of cells in the TO.

Decision:The GC2 can issue move to or fire at commands to a particular k ∈ TO which is an individual TO
in the set. A C2 strategy is defined as mapping from perceived TO and agent states to a particular k. Different
task assignment strategies can be programmed such as assign GRU to the TO closest to the DA, or the largest
or fastest growing TO. More sophisticated decision models can employ minimum risk strategies. This is
outside the scope of this paper.

Parameters: θgc2 = [θgen, nmax, rmin, Omax, δthreat], where nmax is the maximum number of TO track-
able, rmin the minimum distance between cells to be classified as a new TO, Omax the maximum number of
cells in a TO (the maximum TO size).

2.5 Agsu, Ada, Assu and Aaru Models

For perception, Agsu use the sensor and communication models of Section 2.2. The states for Agsu are:
xgsu = [xgen, O1..nmax

, C]. Parameters are θgsu = [θgen, rsense, Vt, δthreat]. The Assu model can be
based on the Agsu model with larger sensing range and noise characteristics to model satellite-based sensing.
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Satellite availability can be modelled by adjusting the availability parameter with time. The Aaru model can
be based on the Agru model with high values of speed and heading-rate to model a fast aircraft.

3 RESULTS

Latin hypersquares sampling was used to generate 3000 different scenarios with 9 initialization parameters
considered including (1) the number of fire ignition points nfire ∈ [1, 7]; (2) the number of GRU nGRU ∈
[1, 7]; (3) a radius for a fire centroid location rcentfire ∈ [0, 20] from a DA located at cell coordinates (0, 25);
(4) a fire dispersion radius assumed normally distributed with mean rdispfire ∈ [0, 10]. Similarly for the GRU
starting locations there is (5) rcentGRU ∈ [0, 20] and (6) rdispGRU ∈ [0, 10]. (7) the starting distance between
fire and GRU rfireGRU . There is also GRU water tank level (8) w ∈ [0, 1] and (9) water range rwater ∈
[5, 20]. Additionally, other parameters for fire threat and agents introduce stochasticity in the simulator. These
parameters were initialized using the principle of maximum entropy (Jaynes (1957)).

The simulator was implemented in MATLAB and used to generate data for the 3000 scenarios. Various
simulator output metrics can be considered such as the maximum time that a fire was within a certain distance
of the DA or GRU, the closest distance that any fire came to the DA, or the amount of time that a GRU spent
engaging, fleeing, or moving to engage.

Figure 7. Closest approach distance of fire to the DA
as a function of initial distance between the fire and

the DA.

We analyzed how effective the BRT was at keeping
the fire threat a certain distance away from the DA by
considering continuous performance measures such
as distances of closest approach. The data was anal-
ysed using Generalized Additive Models (GAM) to
allow for non-linear effects (Hastie (2017)). Fig. 7
shows the closest approach distances to the DA as
a function of the initial distance between the fire
and the DA. The distance units are all in cells. The
closest approach distances to DA appear to be use-
ful continuous performance measures on the fire-
fighting effectiveness of the BRT. For example, it can
be seen that the BRT was able to keep the fire at least
7 cells away from the DA if the initial distance be-
tween the DA and fire was 30 cells or greater. It can
also be seen that the fire comes dangerously close to
the DA (within 2 cells) if the initial distance from
asset to fire is 10 cells or less.

Figure 8. Closest approach distance of fire to the
GRU as a function of initial distance between the fire

and the DA.

We also considered how effective the BRT was at
maintaining safe separation between GRU assets and
the fire. Fig. 8 shows the closest approach dis-
tances to the GRU as a function of the initial dis-
tance between the fire and the DA. It can be seen
that a dangerously close separation distance of less
than 2 cells occurred if the initial distance was less
than 8 cells. The closest approach to the GRU would
depend on multiple dependant factors including the
fire’s spread, the effectiveness and aggressiveness of
the C2 and GRU strategies, the sensing range and
effectiveness, the water range and the GRU maneu-
verability.

4 CONCLUSION

This paper presented a bushfire emergency response simulation tool intended to simulate key dynamic char-
acteristics of emergency response operations. The simulator is intended to be used to assess the impact of
uncertainty in complex interacting systems and as a surrogate for similar Defence problems. Future work will
consider enhancements for simulation of different sources of uncertainty such as model uncertainties.
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