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Abstract:  Today, scenarios based on computer simulations are a fundamental tool for informing decision 
making at different levels of an organisation. When decisions concern the potential behaviour of 
complex systems, then uncertainty quantification (UQ) is paramount to provide appropriate levels of 
information for effective decision making. This is especially true for the Department of Defence which 
needs to make decisions on highly complex systems of systems, in uncertain future scenarios. However, it 
is useful to explore the tools and techniques required to analyse and communicate this uncertainty in an 
unclassified manner. Therefore, this project developed an unclassified, bushfire emergency response 
simulation to understand how to model, manage and communicate the impact of uncertainty in complex 
systems, as a surrogate for similar Defence problems. In this scenario, the fire is a threat and can exhibit 
behaviours characteristic of a complex system. The fire interacts with a network of response unit models, 
which in response to the complex behaviour of the fire, exhibit complex and uncertain behaviour, all while 
following mostly simple, deterministic logic. These models are comprised of the assets to be protected, 
command and control assets, fixed and mobile sensing assets, and assets within the response team with 
different capabilities to move and fight the fire (Fig. 1). The simulator is intended to capture key emergency 
response dynamic characteristics.

Figure 1. Simplified operational context diagram of 
bushfire emergency response.

This is the first in a series of
papers utilising bushfire emer-
gency response simulation as
a surrogate for Defence prob-
lems to explore the quantifi-
cation of uncertainty in mod-
elling, simulation and analy-
sis of complex systems. This
paper addresses the effects of
input and output uncertainty,
while future papers will ad-
dress other sources of uncer-
tainty, such as uncertainty in
the operational environment,
mission, agent behaviour, and
importantly the communica-
tion of the impact of these var-
ious sources of uncertainty to
decision makers.
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1 INTRODUCTION

As Defence systems become increasingly complex, the Australian Department of Defence needs new tools
to model, manage and communicate the impact of uncertainty in complex dynamical systems modelling,
simulations and analysis. Exploring the tools and techniques required to treat this uncertainty in an unclassified
manner is useful. Quantifying uncertainty in different situations and analysing how uncertainties interact is
an important problem for bushfire emergency response when making decisions about developing and shaping
future capability. For this project, bushfire emergency response was chosen as an unclassified surrogate for a
range of Defence problems.

Bushfire behaviour occurs over different spatio-temporal scales, making it difficult to predict the rate of spread,
given numerous complex variables such as fuel, wind and terrain (Miller et al. (2015)). Bushfire simulators
model a bushfire’s spatial and temporal dynamics in different scenarios and are used to aid the prediction and
management of bushfires (Miller et al. (2015); Sullivan (2009)). State of the art examples include PHOENIX
Rapidfire (Tolhurst et al. (2008)), AUSTRALIS (Johnston et al. (2008)), and (SPARK Miller et al. (2015)).
These simulators include comprehensive environment, fire behaviour, propagation, fuel, and asset impact mod-
els enabling predictions, statistics and visualization of bushfire spread to aid decision makers. Systems used
to quantify uncertainty in bushfire response include FireDST (French et al. (2013)) and SABRE (Twomey and
Sturgess (2016)) which are PHOENIX-based integrated fire risk assessment tools. These use a determinis-
tic simulation model together with probabilities to perform the risk assessment and provide decision support.
In contrast, this paper focuses on a general framework and methodology to characterizing the impact of un-
certainty in complex systems, as a surrogate for similar Defence problems. For this purpose, our framework
considers the dynamical interactions between a fire fighting team, support assets and a bushfire threat, enabling
simulation and analysis of different operational, tactical and strategic management decisions.

Table 1. Sources of Uncertainty for BERS Modelling.
Nature of Uncertainty (Smith (2013)) Key Uncertainty Sources
Experimental uncertainties / limitations Deployment scenario / mission

System performance / data
Model errors / discrepancies System functionality

Decision making (human or machine)
Input uncertainties Natural environment

Threat behaviour

Table 1 describes an incomplete list
of example sources of uncertainty for
the Bushfire Emergency Response Sce-
nario (BERS) modelling, simulation
and analysis activity. These uncertain-
ties are categorised by the “nature” of
the uncertainty as described in (Smith
(2013)). Another source of uncertainty is “numerical errors and uncertainties” in the computation of the simu-
lation results, but these are “the least uncertain component of predictive sciences” (Smith (2013)) and are not
described in the table. Smith (2013) presents a larger framework for uncertainty quantification (UQ).

In addition to fire behaviour uncertainty, there is also uncertainty in the response to bushfire emergencies,
including response team design, technology, equipment, operational deployment, human factors and the out-
comes of these decisions. For example, how can decision makers be confident that they have prepared the right
number and type of vehicles and equipment, and how successful they will be? There are few tools available to
decision makers for quantifying these kinds of uncertainties. Emergency response simulation is complicated
by the necessity to perform many computationally intensive simulations and the lack of knowledge regarding
uncertain inputs and outputs. This paper presents a simulation methodology that simplifies the process of
uncertainty analysis and quantifies the uncertainty that arises in complex systems.

2 MISSION AND OPERATIONAL ENVIRONMENT AND UNCERTAINTY

The mission definition includes defining the operational environment, the bushfire threat, and the response
teams. A Bushfire Emergency Response Scenario (BERS) with response team assets is depicted in Fig. 1. The
mission is considered to include a Bushfire Threat (BFT) which are spot bushfires occurring at any location
within the considered area of operations. Defended Assets (DA) are stationary ground-based assets that are
vulnerable to the BFT. The Bushfire Response Team (BRT) includes a Global Command and Control Unit
(GC2), which is a global command and control (C2) unit that sets the BFT response strategy and provides
execution plans for the different response teams and units. Local Response C2 Units (LC2s) are mobile local
C2 units that communicate with their associated fire-fighting response units and the global C2 unit. These
units set the local BFT strategy and provide execution plans for their assigned ground-based response units
at the local level. Ground-based Response Units (GRUs) are mobile units with local fire-sensing as well
as local low-power fire-fighting capabilities. GRUs can communicate with LC2 to which they are assigned.
Aerial-response Units (ARUs) have sensing capability as well as high-power capability to extinguish the fire.

43



T. Bruggemann et al., Bushfire Emergency Response Uncertainty Quantification

Ground-based Sensing Units (GSU) are spatially distributed sensors over the area of operations. Space-based
Sensing Units (SSU) are satellite-like sensors that can provide global information related to the state of the
BFT and response team at specific times.

3 MODELLING AND SIMULATION FOR UNCERTAINTY QUANTIFICATION (UQ)

Fig. 2 shows the UQ work flow. A UQ definition process is required to define the mission and UQ objectives,
operational environment, system behaviours, and performance hypotheses which are propositions about the
mission and objectives to be tested, based on data generated from the simulation scenarios and available
background information.

Figure 2. Simulation methodology.

The simulation for the UQ in-
volves setting up the simula-
tor, performing UQ of the in-
puts and generating input data,
followed by running the sim-
ulation and generating output
data to perform the UQ of the
Mission. The outcomes of the
analysis can then be used to
communicate to decision mak-
ers about operational strate-
gies, or BRT design, while de-
scribed within the appropriate
context as defined by the UQ.

4 SIMULATION OBJECTIVES AND PERFORMANCE HYPOTHESES

It is often desired to analyse the performance of the BRT given a number of fires and assets with a range of fire
behaviours and initial conditions such as location, in the presence of uncertainty. A performance hypothesis
is considered to be O : {Mission success is achieved under the required operational conditions} and then its
probability is evaluated conditioned on propositions related to available background information I and the data
D from the simulation scenarios, namely, Pr(O|D, I). For example, two mission success measures might be:
(1) Keep all threats out of pre-defined range of a DA and (2) Avoid loss (destruction) of fire-fighting assets.

5 SOURCES OF UNCERTAINTY IN BERS MODELLING, SIMULATION AND ANALYSIS

In BERS UQ, we are concerned with simulating models of the form:

xt+1 = f(t,xt,ut,θ) + ηt, (1)
yt = g(t,xt,ut,θ) + νt, (2)

where xt is the state of the BERS system, with initial state xt=0 = x0; ut is the exogenous input to the
system; θ is the vector of model parameters; yt is the output or observed attributes of the system; f is the state
(transition) model and g is the output (measurement) model. ηt and νt are random variables assumed to be
following a Gaussian density function conditioned on prior information I . ηt represents the error (assumed
additive) with which the model f describes the transition from the current state xt to the successor state xt+1.
Similarly, νt represents the error (assumed additive) with which the model g describes the output. The most
fundamental question in UQ for simulation models is not how to propagate uncertainty through the simulator,
but how to model the uncertainty associated with the inputs that go into the simulator. One possibility is
to use the maximum entropy principle approach to characterise the input uncertainty (Jaynes (1957)). For
example,the maximum entropy (MaxEnt) distribution is the uniform distribution when p(x) = 1/(b − a) for
a ≤ x ≤ b, the Laplace probability density when x takes values in (−∞,∞), and the exponential probability
density when x takes values in [0,∞) (Kapur (1989)).

In order to simulate a scenario we need to draw realisations of p(θ|I), p(x0|I), pη(ηt|I), pν(νt|I) in order
to initialise the simulator. The theory of sampling is well developed and will not be reviewed here (Bolstad
(2010),Kroese et al. (2011)). The following sources of uncertainty can be identified:

• Input uncertainty includes parametric uncertainty which is uncertainty in θ, and initial-condition uncer-
tainty which is uncertainty in the value of the state at time zero.
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• Model uncertainty is uncertainty in the structure of the state and measurement functions f and g in-
cluding the equations themselves, the algorithms used to implement the equations in simulation, and the
coupling of the models (Freni and Mannina (2010)).

• Numerical simulation uncertainty is uncertainty due to numerical equation solution methods, discretisa-
tion and resultant complex non-linear behaviours.

• Output uncertainty in the quantities of interest, such as asset survival. In this work we assume νt = 0.

• Other sources of uncertainty within the scenario, such as within the operational environment, mission
definition, and asset behaviour; initially, this research is focused on the input and output uncertainty.

The type of complex systems we are concerned with have a number of entities that have the capability to
interact (called interaction structure) (Willems and Polderman (2013)). Uncertainty can arise from a number of
sources such as stochasticity in the system, sub-systems and through the entity interactions such as “emergent
behaviour”, i.e. behaviour that cannot be foreseen by study of the entities individually (Green (1993)).

The type of entities considered in BERS modelling are dynamical systems or “agents” that have capability for
decision making and actuation (energy and physical interaction), sensing (information interaction) and com-
munication (information exchange) capabilities. Actuation can be categorized into acting upon other entities
(e.g. engaging fires), the environment or itself. Sensing can be categorized into acquiring information about
other entities, the environment, or itself (e.g. resource level, health). Communication can be categorized into
transmitting or receiving information about other entities, the environment, or itself (knowledge/intelligence)
or as directives to perform some actions (command and control).

6 SIMULATION AND OUTPUT DATA GENERATION

Figure 3. Simulation Process.

Fig. 3 shows the process and
inputs and outputs considered
for BERS simulation. Our
BERS simulator was initial-
ized with a 80x80 cell grid and
a single DA was located at 0
cells North and 40 cells East
such that the DA was in the
centre of the x-axis. Fig. 4
(left) illustrates the simulator
inputs for a single scenario.
Fire is defined as the temper-
ature of a cell as indicated by the cell colour from 0 (blue, coldest), to 1 (red, hottest). Fig. 4 (right) illustrates
the closest distance between fire and DA output, near the end of the simulation.

Refer to Bruggemann et al. (2019) for details about the simulator. There are 9 input uncertainty parameters
of interest considered, including the number of fire ignition points ∈ [1, 7] and the initial number of GRU
∈ [1, 10]. There are 5 parameters for the initial starting location of the fires and GRU which were initialized
radially from the DA location. For a given number of GRU, a centroid location was chosen at a random starting
distance ∈ [0, 50] cells and angle ∈ [−π, π] from the location 0 North and 40 East. Then, individual GRU
were dispersed around the centroid by sampling a Gaussian distribution with mean distance ∈ [0, 10] cells and
variance of 9 cells. Similarly the fires were initialized at random starting distance ∈ [0, 50] cells and angle
∈ [−π, π] from the DA and dispersed around the fire centroid by sampling a Gaussian distribution with mean
distance ∈ [0, 10] cells and variance of 9 cells. Two parameters for GRU equipage were considered: GRU
water tank level ∈ [0, 1] from 0 (empty) to 1 (full) and GRU water range ∈ [5, 20] cells. There was also noise
such as wind speed and direction and environmental parameters that govern fire behaviour (see Bruggemann
et al. (2019)). Wind direction was set to vary according to a random walk, constrained to angles that would
blow the fire towards the DA, so that fires always posed a threat to the DA. The GRU sensor range was fixed
to 20 cells. A GRU was deemed destroyed if the fire above a certain temperature threshold came within 1 cell
of the GRU.

The simulator output metrics considered were the number of GRU lost and the time that a GRU was first lost
as indicators of survivability; the maximum time that a fire was within a GRU’s water range as an indicator
of a GRU’s fire-fighting effectiveness; the closest distance that any fire came to any GRU as an indicator of

45



T. Bruggemann et al., Bushfire Emergency Response Uncertainty Quantification

Figure 4. Left: Grid map of the simulation, illustrating the simulator inputs for a single scenario. A single
DA (cyan triangle) is located at 0 cells North, 40 cells East. The simulator inputs include the DA to GRU
starting distance, DA to Fire starting distance and the GRU to Fire starting distance. From these distances, the
location of a GRU centroid (cyan square) and location of a Fire centroid (green square) are determined. Then,
individual fire and GRU starting locations are determined from the fire dispersion radius and GRU dispersion
radius inputs, respectively. Fire starting locations are shown by the coloured cells around the Fire centroid
which indicate cell temperatures from 0 (blue, coldest) to 1 (red, hottest). GRU starting locations for 2 GRU
(magenta squares) are shown. Right: Near the end of the simulation, both GRU have been destroyed (at
locations indicated by yellow squares), and the fire has formed a front which is moving towards the DA. The
closest distance between the fire and DA at this point in simulation is shown.

a GRU’s ability to protect itself and; the closest distance that any fire came to the DA as an indicator of the
GRU’s ability to protect the DA. Only the DA protection and GRU survivability will be considered in the
following results.

Results: Uncertainty Quantification About Mission Success

We consider mission success S as a function of whether performance indices Em are met, which can be either
true or false. If we produce N replications (simulations) of a particular operational scenario we will obtain
a set of binary data D. If Em are Bernoulli distributed then we can find the posterior probability of success
Pr(S|D), numerically from the simulation data (Perez et al. (2012); Perez (2015); Kallinen et al. (2019)).

For example, suppose that success is defined as a defended asset surviving a trial. We assume that the number
of times an asset survives x, out of n trials, follows a binomial distribution and we wish to calculate the
probability of an asset surviving Pr(S). Taking a Bayesian approach, we assume that S follows a Bernoulli
distribution and assume a uniform prior on S, which is the maximum entropy prior for Pr(S). The posterior
probability of success then follows a beta distribution, Pr(S|D) ∼ Beta(x + 1, n − x + 1). To quantify
the uncertainty in the posterior probability of success estimates, the 95% posterior intervals can be computed
numerically from the 2.5 and 97.5 percentiles of the beta inverse cumulative distribution function. We can then
say that there is a 95% chance that the true probability of success lies in these intervals.

N = 3000 mission scenarios (Monte Carlo runs) were run using our BERS simulator. From their starting
locations, the GRU sense and move to any fires within its sensor radius, and deploy water on any fires within
its water range. The fires are also moving and spreading towards the DA location. When there are multiple
fire locations, the GRU are programmed to deploy water on fires that are closest to the DA location to protect
the asset. In the set of binary data, D = 1 if a fire came within 1 cell of the DA location and D = 0 otherwise.
From D, the probability of survival for the DA was determined over the range of starting distances between
the DA and GRU, and the initial number of GRU.

Fig. 5 (left) shows the probability of the DA surviving given the starting distance between the DA and GRU
and the number of GRU. There was a high probability (> 0.9) of DA survival given an initial number of 5 or
more GRU and a starting distance between GRU and DA of approximately 3 to 15 cells. Fig. 5 (right) shows
the probability of the DA surviving given the starting distance between the DA and GRU and for the 6 GRU
case. An increasing probability from 0 to 15 cells is likely due to GRU being destroyed when located too close
to the DA. The probability is seen to decrease suddenly at a distance of 20 cells. This is possibly due to GRU
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near the maximum of their water or sensing ranges (which was 20 cells). The maxima at 35-40 cells warrants
further investigation. Generally, the probability of DA survival is seen to reduce as GRU are initially located
further away.

For a different measure of uncertainty, the maximum standard error was calculated to be 0.11 for Fig. 5 (left)
and 0.08 for Fig. 5 (right). The magnitude of the maximum standard errors indicates that the variations of
probability seen over the initial GRU-DA distances are genuine and not artifacts of the simulation environment.
A challenge in UQ is that some measures of uncertainty are open to be misinterpreted (Barde and Barde
(2012)). The best approach to UQ that minimizes misinterpretation will be explored in future analysis.

Figure 5. Left: Probability of the DA surviving given the starting distance between DA and GRU and the
initial number of GRU (Maximum Standard Error is 0.11). Right: Probability of the DA surviving given the
starting distance between DA and GRU and a team of 6 GRU (Maximum Standard Error is 0.08).

The probability of survival for the GRU was determined over the range of starting distances between the BFT
and GRU, and the initial number of GRU. Fig. 6 (left) shows the probability of one GRU surviving given an
initial number of GRU. It can be observed that the probability of one GRU surviving increases near linearly
until 6 GRU, where it appears to saturate at a probability of approximately 0.8 as the effect of increasing the
size of the team increases the risk of losing a GRU. Fig. 6 (right) shows the probability of one GRU surviving
given the starting distance between GRU and BFT and a team of 6 GRU. This information can be crucial for
the design of a response task force, and also tactical operational decisions.

Figure 6. Left: Probability of one GRU surviving given the initial number of GRU (Maximum Standard
Error is 0.11). Right: Probability of one GRU surviving given the starting distance between GRU and BFT
and a team of 6 GRU (Maximum Standard Error is 0.03).
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7 CONCLUSION

In bushfire emergency response there are many different types of uncertainty to be quantified including, but
not limited to, uncertainty around the mission, objectives and human behaviour. This paper only considers a
few types of uncertainty, ones that could be easily quantified using standard computer-based simulation and
Monte Carlo methods. Future work will consider more sources of uncertainty as well as communication of that
uncertainty to decision makers. These results can inform decision making and policy regarding matters such as
force design, C2 strategies, sensing, fire-fighting equipment, response unit type and equipage. Additionally, a
future activity of this project is to adapt these UQ methodologies and apply them to specific Defence problems,
to assess their broad applicability.
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