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Abstract: In recent years, machine learning has played an increasing role to help identify druggable 
molecules. In particular research has shown that random forests (RFs), recursive partitioning (RP), support 
vector machines (SVMs) and artificial neural networks (ANNs) have been commonly employed in this arena. 
Expanding disease modifying targets to pharmacological manipulation is vital to human health. Modelling 
disease targets allow for prediction and prioritisation based on their molecular characteristics and druggability. 
The aim of this current paper is 2 fold: (i) to propose a computational method to identify druggable disease 
targets using combinations molecular parameters (MPs) and (ii) to establish which of ANN or RF procedures 
and which scoring functions best partition molecular and disease target space. Classifications by Artificial 
Neural Networks (ANNs) and Random Forest (RF) based on 8 molecular parameters (MPs) were performed 
to classify disease targets with high or low violator scores (using cutpoints 3, 4 or 5), and the 4 traditional 
parameters of Lipinski’s rule of five (Ro5), plus 4 extra parameters (polar surface area (PSA), number of 
rotatable bonds and rings, N and O atoms, and a choice  between 2 alternatives for lipophilicity, the distribution 
coefficient (log D) and the partition coefficient (log P) (Hudson et al., (2017), Zafar et al., (2013, 2016)).  

For the molecule parameter (MP) data RF performed better than ANNs and the log D model of either score 4 
or score 5 was optimal compared to the log P model. ANNs however, were superior to the RF models for MP 
sets containing both log D and log P. For the RF score 4 log D model the most important variables were log D, 
molecular weight (MW) and number of rotatable bonds (ROT). The next best model via RF was score 5 log D, 
with its most important variables being PSA, log D and MW, according to mean decrease in gini scores.  

Overall, for the target data the RF models performed better than ANNs, with inclusion of log D being important. 
For the RF target models the score 5 partition performed best, AUC (95% CI) of 0.88 (0.63, 1.0) for all 3 
models; with the higher mean decrease gini values (MDGs) attributable to MPs (MW, NATOM, ROT, PSA 
Hacceptors, NRING). The MP variables then chosen with lower MDGs were (log D, NATOM, NRING, log 
P, Hdonors), indicating log D is superior to log P (VIs, 2.14 > 1.47). Also the RF score 4 log D, and log P 
models performed equally well, AUC (95% CI) of 0.85 (0.70, 1.00) - closely followed by the RF score 3 target 
models, score 3 log D and score 3(log D+log P), which both did well with AUC (95% CI) of 0.84 (0.73, 0.94). 
The ANN target based score 4 log D model, achieved best classification, with AUC (95% CI) of 0.89 (0.77, 
1.0). In contrast the score 4 log D+Log P model performed the worst, with AUC (95% CI) of 0.69 (0.51, 0.86). 
Similarly for the RF analysis, the score 4 log D+log P performed worse with AUC (95% CI) of 0.83 (0.68, 
0.92), whilst separate score 4 log D or log P models classified equally well (0.85, (0.707, 1.0)). All 3 cutpoint 
3 ANN target models, showed PSA to be highly important compared to the MW. In contrast MW is the most 
important variable for all RF target models and all cutpoints. Log D has greater variable importance (VI) 
compared to MW in the score 3 log D+log P ANN model (17.31 >12.60). Also in the score 3 log P ANN model, 
MW has least VI of 6.46 compared to log P’s VI of 17.15. Log D is more important than log P in the score 3 
log D+log P model..  For the optimal score 4 log D, model top VIs are attributable to (PSA, log D, NRING, 
Hacceptors, MW), showing strong influence of PSA and Log D compared to the traditional MW.  
The RP and ANN rules to classify the high score violators from the low confirmed the value of log D in the 
scoring function, validating Zafar et al. (2016, 2013) and  the original MC/DA cutpoints for each MP by 
Hudson et al. (2017). Score functions of violations and best cutpoints to identify druggable molecules and 
targets were confirmed and shown to be associated with specific diseases. Our simple scoring functions of 
counts of violations partitioned chemospace well, identifying both good/ poor druggable molecules and targets.   
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1. INTRODUCTION 

In recent years, machine learning has played an increasing role to help determine the classification of druggable 
molecules (Doak & Kihlberg, 2017). In particular, research has shown that recursive partitioning (RP), random 
forests (RFs), support vector machines (SVMs) and artificial neural networks (ANNs) have been commonly 
employed in this arena (Lavecchia, 2015; Kandoi et al., 2015). High throughput docking of small molecule 
ligands (candidate drugs) into high resolution protein structures is now standard in computational approaches 
to drug discovery (Ursu et al., 2017). For example Hudson et al. (2016) investigated Self Organising Map 
(SOM) ANNs as a computational tool for the evaluation of docking experiments of calpain ligands (small drug 
molecules) for the treatment of cataracts. Recently Hudson et al., (2017) also studied the performance of 
support vector machine (SVM) and Recursive partitioning (RP) based on 10 molecular descriptors, to classify 
molecules with high or low violator scores (defined by an optimal cutpoint, C, shown to be 5), based on skew 
normal and logit models. RP and SVM were then used to classify the high score molecular violators from the 
low (< 5). Hudson et al., (2017) showed that SVM used in combination with simple molecular descriptors 
provided a reliable assessment of a scoring function of counts of violations of MPs developed by Hudson et 
al., (2014) to partition molecular chemo-space into druggable molecules (Guan et al., 2019). 

Recently many disease targets have been classified as “undruggable” due to their lack of oral bioavailability 
(Doak et al., 2016; Gashaw et al. 2011). Generally such targets have binding sites which are large, highly 
lipophilic, flexible, highly polar and featureless. This has in part created a momentum in small molecule drug 
discovery to move outside the rule of 5 (Ro5) space of Lipinski (2016), to the so-called beyond Ro5 (bRo5) 
space (Doak et al., 2017). The aim of this current paper is two-fold: (i) to propose a computational method to 
identify druggable disease targets using combinations of molecular parameters and (ii) to establish which of 
ANN or RF procedures and which scoring functions best partition disease target space. This has not been 
formally established for the data set studied by Hudson et al., (2017). Note however that Hudson et al. (2017) 
showed indirectly that molecules with 5 or more violations were empirically associated with specific disease 
targets, but did not test machine learning methods using the actual target scores associated with the 172 disease 
targets, as performed in this paper. Recent preliminary work by Leemaqz et al. (2018), using SVM and RPs 
directly on the median scores of molecules associated with disease targets, showed the superiority of SVM to 
RP to partition targets with a median score of 4 or more violations. The score function evaluated in this current 
study for both the molecular parameters (MPs) and for the target median scores, comprises the 4 traditional 
parameters of the rule of five (Ro5) (Lipinski 2016), plus 5 extra molecular parameters, polar surface area 
(PSA), number of rotatable bonds, rings, number of N and O atoms, and Log P (a measure of lipophilicity) and 
Log D (the distribution coefficient) suggested by Zafar et al., (2016, 2013) as a preferable predictor for 
permeation to Lipinski’s classical partition coefficient, Log P (Bhal et al., 2007). Hudson et al. (2017, 2014) 
developed druggability rules for molecules  (scores counting violations) that account for physico-chemical 
properties, and  derived novel cutpoints for each of 10 MPs based on a mixture clustering (mclust) discriminant 
analysis (MC/DA) approach (Fraley et al., 2012). We use these MP cutpoints in this study, which were shown 
to be much in agreement with recent cutpoints per molecular parameter reported by Ursu et al. (2017).   

2. DATA AND METHODS        

2.1. Data and Druggability scoring for molecules and disease targets 

We analysed 1279 small molecules from the DrugBank database (Law et al., 2013), a unique bioinformatics 
and chemo-informatics resource combining detailed drug (i.e. chemical, pharmacological and pharmaceutical) 
data with drug target (i.e. sequence, structure, and pathway) information, containing 6,711 drug entries (a 
candidate molecule is shown in Table 1). In total there are 105 Ro5 non-compliant molecules, 681 with oral 
and 598 non-oral delivery modes. In this study 172 targets representing 1279 molecules were found and the 
median score value obtained for the molecules in the given target; with 99 targets predominantly oral and 73 
non-oral in terms of modes of delivery. Specifically in this study MP score functions were based upon the filter 
scores of Hudson et al. (2017), where molecules with violations of less or equal to 4 or 5, were considered a 
druggable molecule. In this study the score function per molecule sums the number of violations based on 8 or 
9 MPs modelled. The filter scores were created as follows for each molecular parameter (MP): lipophilicity 
(Log P) ≤ 1.9, lipophilicity (Log D) ≤ 3.5, molecular weight (MW) ≤ 305, hydrogen bond donors ≤ 4, hydrogen 
bond acceptors ≤ 10, polar surface area (PSA) ≤ 140, rotatable bonds ≤ 7, ring numbers ≤ 2, and number of 
nitrogen and oxygen atoms ≤ 40. Hudson’s cutpoint for Log D of 3.5, is smaller than 5.5, suggested by Bhal et 
al. (2007). Implementation of  log D ~ 3.5, instead of the classical log P parameter for the estimation of the 
molecule’s lipophilicity was shown to be more optimal (Zafar et al., 2016; 2013), but in this study using ANN 
and RF we test models including both log D and log P and those with just one of these lipophilicity variants. 
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Table 1. DrugBank3.0 information on one candidate molecule (DB01048 Abacavir). 

DrugBank ID & 
Name CAS Number 

Molecular 
Weight 
Formula 

Chemical Structure Categories Therapeutic Indication 

DB01048 Abacavir  
 

136470-78-5 

286.3323 
 

C14H18N6O 

 

 
 
 

Anti-HIV Agents / 
Nucleoside and 

Nucleotide Reverse 
Transcriptase Inhibitors 
/ Reverse Transcriptase 

Inhibitors 
  

 
For the treatment of HIV-1 
infection, in combination 
with other antiretroviral 

agents 

2.2. Statistical and program approach 

The dataset was partitioned into 70% and 30% for training and testing purposes, respectively, to avoid model 
overfitting. The success of the model was determined by assessing the area under the curve (AUC) of the 
receiver operating characteristic (ROC) curve, a measure used to predict model accuracy (Sachs, 2018). For 
replication, all models were created using a seed of 44.  RF models were based on 10-fold cross validation on 
the training partition with a repetition of 5. As RF is considered an accumulative model algorithm, the only 
tuning parameter used was the number of trees. The averaged model across the specified number of trees was 
then assessed on the testing data. Artificial neural network (ANN) models were created using a 10-fold cross 
validation on the training partition and repetition of 5, with models assessed via the training partition. All 
variable scores were scaled and centred before being integrated in the model.  

The final model was created using a tune grid containing decay (to avoid overfitting via regularisation) 
parameters between 0.1 to 0.5 by a value of 0.1 and size parameters (the number of hidden nodes in the network) 
between 1 to 10 used. Each of these steps was conducted across each of the different score functions:  score C 
(log P), score C (log D), score C (log D+log P), for C=3, 4 or 5. This ensured the best machine learning method 
was identified and the most effective score for classification established. RStudio and Kuhn et al.’s (2018) 
Caret package were used for all classification and Beck’s (2018) NeuralNetTools for the visual plots for the 
neural network models.  

3. RESULTS 

The AUC and 95% CI of each machine learning model (RF and ANN) for both the molecular properties (MPs) 
and the disease targets data across score functions (with varying  cutpoints and model variations founded on 
whether Log D, Log P or both were included in the model (log D+log P) are given in Table 2.  Based on the 
work of Hudson et al., (2017) only score 4 or 5 cutpoints were tested and valid for the MPs, as reported in 
Table 2. For the target based score functions cutpoints 3 to 5 were tested (see Leemaqz et al., 2018) (Table 2). 

Table 2. AUC and 95 % CIs for RF and ANN models for both the MPs and the Disease Target data. 

 
Score  functions 

 
RF on MPs  

 
ANN on MPs 

 
RF on Targets 

 
ANN on Targets 
 

 AUC (95% CI)  AUC (95% CI) AUC (95% CI) AUC (95% CI)  
Score 3 log P - - 0.82  (0.71, 0.93) 0.82 (0.71, 0.93)  
Score 3 log D - - 0.84  (0.73, 0.94) 0.80 (0.69, 0.91) 
Score 3 log D+logP - - 0.84  (0.73, 0.94) 0.84 (0.73, 0.94)  

 
Score 4 log P 99.58 (99.18-99.98) 99.29 (98.72-99.85) 0.85  (0.70, 1.00) 0.72 (0.54, 0.90) 
Score 4 log D 99.70 (99.42-99.99) 99.27 (98.59-99.70) 0.85  (0.70, 1.00) 0.89  (0.77, 1.00) 
Score 4 log D+logP 93.05 (92.70-94.20) 98.00 (97.60-99.00) 0.83  (0.68, 0.92) 0.69  (0.51, 0.86) 

 
Score 5 log P 99.16 (98.51-99.82) 98.86 (98.04-99.69) 0.88  (0.63, 1.00) 1.00  (1.00, 1.00) 
Score 5 log D 99.33 (98.73-99.92) 99.01 (98.22-99.80) 0.88  (0.63, 1.00) 0.50  (0.50, 0.50) 
Score 5 log D+logP 93.79 (92.70-95.20) 98.10 (97.60-98.60) 0.88  (0.63, 1.00) 0.50  (0.50, 0.50) 
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3.1. Results of the analyses based on molecular parameters 

From Table 2 the RF and ANN models on the MPs,  demonstrated that RF performed  better  than ANNs and  
the log D  variant of either  score 4 or score 5  was optimal. Random forest analysis of the MPs showed that 
score 4 log D had best performance followed by score 5 log D (Table 2). In the RF score 4 log D model the 
most important variables were log D, molecular weight (MW) and number of rotatable bonds (ROT), based on 
gini values (gini values not reported here). The next best model via RF, score 5 log D had polar surface area 
(PSA), log D and molecular weight (MW) as the most important variables. Overall, the score functions that 
best classified molecular druggable status included log D. From Table 2 ANNs of the MPs showed that score 
4 log P performed best (closely followed by its log D variant), with its most important MP variables being 
 

 
Figure 1. Artificial Neural Network plots for each Drug Target model; a) cutpoint 3 log P, b) cutpoint 3 log 

D, c) cutpoint 4 log P and d) cutpoint 4 log D. 
 

log D, molecular weight (MW) and number of rotatable bonds (ROT). The next best ANN model was score 5 
log D with most important variables being polar surface area (PSA), log D and MW.  The ANN log P models, 
based on score 4 log P and score 5 log P, revealed that MW and log P were important for the score 5 log P 
model, with higher variable importance (VI) being attributable to MW, hydrogen bond acceptors (Hacceptors) 
and Log P. However, neither MW nor log P were important to the score 4 log P model, with highest VIs 
attributable to Hacceptors, ROT and NATOM as MPs (VIs are not reported here). 

3.2. Results of the analyses based on the target data 

The ANN plots for the 4 models of the target data based on score C log P, or score C log D (for C=3, 4) are 
given in Figure 1. Based on AUCs the ANN models on the disease target data, the log D variant of score 4 was 
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optimal (Table 2). The following ANN target models for score 3 log D+log P and score 3 logP are optimal 
with AUC (95% CI) of 0.84 (0.73, 0.94) and 0.82 (0.71, 0.93), respectively (Table 2). Note that RF based target 
models for  score 3 log D+log P and score 3 Log D  achieved  the  same AUC values as the corresponding 
score 3 log D+Log P ANN models. For the ANN target based C=4 partition, score 4 log D model achieved 
best classification, with AUC (95% CI) of 0.89 (0.77, 1.0). In contrast the score 4 log D+Log P model 
performed the worst, with AUC (95% CI) of 0.69 (0.51, 0.86). Similarly for the RF analysis, score 4 log D and 
score 4 log P classified equally well (0.85, (0.707, 1.0), with again the score 4 log D+log P, worse with AUC 
(95% CI) of 0.83 (0.68, 0.92). The score 5 ANN models were poor given sparse data and not detailed here.  

For all 3 ANN target models based on cutpoint 3 in Table 3, PSA is shown to be highly important in comparison 
to MW (Table 4). In contrast MW is the most important variable for all the RF target models for all cutpoints. 
Also Log D has greater variable importance (VI) compared to MW in the log D+log P model (17.31 >12.60) 
and log D and MW have similar VIs for the log D cutpoint 3 model (13.21~13.05). Interestingly for the logP 
score 3 model, MW has least VI, with log P and MW VIs being 17.15 and 6.46, respectively. Log D is more 
important than log P in the score 3 log D+log P model (17.31>8.13) but less so for the score 4 log D+log P 
model.  For the ANN score 3 log P target model, top VIs are attributable to (Hdonors, log P, PSA) with VIs 
(20.65, 17.15, 14.48) (with MW of least importance with a VI of 6.46). For the most optimal score 4 log D 
ANN model top VIs are attributable to (PSA, log D, NRING, Hacceptors, MW) with VIs (21.65, 19.53, 13.18, 
11.48, 11.06), revealing the  stronger  contribution of  both PSA and Log D, compared  to MW (Table 4).  

For the RF target models score 5 partition performed the best across all 3 models with AUC (95% CI) of 0.88 
(0.63, 1.0) (Table 2). Likewise the RF target score 3 models involving log D (i.e. log D and (log D+log P)) 
performed equally best with AUC (95% CI) of 0.84 (0.73, 0.94). For the RF target score 4 models both separate 
log D and log P models performed equally well with AUC (95% CI) of 0.85 (0.70, 1.00). Overall the RF models 
performed better than ANNs and inclusion of log D was important (Table 2). Table 4  reports the  mean decrease 
gini (MDG) values  for the RF target models, showing that for cutpoint 3 the highest MDGs  were  attributable 
to (MW, NATOM, PSA, NRING, Hacceptors, ROT), in that order, for  all 3 models. The variables then chosen 
were (log D, Hdonors, log P) with corresponding MDG sequence (3.04, 2.93, 1.84), indicating log D is more 
important than log P. For the remaining score 3 RF models the sequence of variables and MDGs were (log D, 
Hdonors) with MDGs (3.86, 2.86) and (Hdonors, log P) with MDGs (3.0, 2.8), indicating log D’s superiority. 
In the RF cutpoint 4 target models the contribution of the higher MDGs were from (MW, NATOM, ROT, 
Hacceptors, NRING, PSA) in that order for all 3 models (Table 4).  

The variables then chosen with lower MDGs were (log D, log P, Hdonors) with MDG sequence (2.03, 1.77, 
1.69), indicating both log D and log P are of importance. For cutpoint 5 the contribution of the higher MDGs 
were similarly (MW, NATOM, ROT, PSA Hacceptors, NRING) for all 3 models. The variables then chosen 
with lower MDGs were (log D, NATOM, NRING, log P, Hdonors) with MDG sequence (2.14, 1.84, 1.73, 
1.47. 1.25), indicating log D is superior to log P in importance. For the remaining score 5 models the most 
important contributors were (NATOM, log D, NRING, Hdonors) with MDGs (2.57, 2.54, 1.81, 1.48), and 
(NATOM, log P, NRING, Hdonors) with MDGs (2.58, 2.06, 1.95, 1.43), indicating the value of NATOM and 
either log D or log P in the score 5 RF models. 

4. CONCLUSION  

The RP and ANN rules to classify the high score violators from the low confirmed the value of log D’s inclusion 
in the scoring function and supported the original MC/DA cutpoints established for each MP (Hudson et al., 
2017). Score function of violations and best cutpoints to identify druggable molecules and disease targets were 
confirmed. Overall the RF models performed better than ANNs and inclusion of log D was important. The 
most important MPs that influence molecular classification, determined by RF, were MW, NATOM, log D and 
PSA. It was found that log D was a better measure of lipophilicity for classification as shown in all MP analyses.  
The ANN target models indicated that PSA and log D were highly important, while the RF models showed 
MW, NATOM and PSA to be more important than Log D or Log P. Our work illustrates that simple scoring 
functions of counts of violations can partition chemospace and help identify both good and poor druggable 
molecules and targets.  Moreover, molecules with score  functions above 4 or 5 were shown  by Hudson et al. 
(2017) to be associated with specific disease targets, e.g., Anti- Bacterial, Antineoplastic, Antihypertensive and 
Anti-allergic, within which most molecules have a non-oral delivery mode.  Target drugs with a low median 
score were e.g., Adrenergic, Dietary, Analgesics, Anesthetics, Adjuvants, Anti-convulsants, Antimetabolites 
and Antidepressants, most of which were non-oral. Targets were shown to correlate with our score C log D or 
log P partitions (C = 3 to 5). Future work will compare SVM, RF, ANN and RP methods using models based 
on novel factor analytic MP and target constructs and related score functions and will also test new cutpoints. 
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Table 3. Variable Importance values (VI): ANNs on targets: C= 3-5 

ANN  Variable Importance values (VI) on target data 
Cutpoint 3  
logD+LogP VI logD VI logP VI 
PSA 20.87 PSA 16.77 Hdonors 20.65 
LogD 17.31 NATOM 15.77 LogP 17.15 
Hacceptors 14.13 LogD 13.21 PSA 14.48 
MW 12.60 MW 13.05 NRING 12.80 
Hdonors 9.75 Hacceptors 12.12 ROT 10.79 
LogP 8.13 Hdonors 11.73 NATOM 10.62 
NATOM 7.76 NRING 9.52 Hacceptors 7.04 
NRING 5.73 ROT 7.82 MW 6.46 
ROT 3.72     
Cutpoint 4 
NATOM 15.49 PSA 21.65 MW 31.05 
PSA 15.46 LogD 19.53 PSA 14.36 
ROT 13.34 NRING 13.18 Hacceptors 10.36 
LogD 13.16 Hacceptors 11.48 NATOM 10.22 
LogP 12.80 MW 11.06 LogP 9.97 
Hacceptors 11.66 NATOM 9.50 NRING 9.14 
NRING 6.43 ROT 7.52 ROT 9.07 
Hdonors 6.27 Hdonors 6.08 Hdonors 5.84 
MW 5.38     
Cutpoint 5 
MW 56.94 MW 30.65 MW 34.90 
PSA 31.87 NATOM 14.38 PSA 16.40 
NATOM 7.69 PSA 11.19 Hacceptors 11.30 
Hacceptors 1.87 Hacceptors 10.98 NATOM 9.57 
LogD 0.79 ROT 10.88 Hdonors 9.02 
LogP 0.67 LogD 9.95 ROT 7.73 
ROT 0.11 Hdonors 7.21 LogP 5.77 
Hdonors 0.06 NRING 4.77 NRING 5.31 
NRING 0.01     

Table 4. Mean Decrease Gini (MDG) values for RF targets: C= 3 -5 

RF  Mean Decrease Gini (MDG) values on target data 
Cutpoint 3 
logD+LogP MDG logD MDG LogP MDG 
MW 20.62 MW 18.73 MW 18.62 
NATOM 12.95 NATOM 13.30 NATOM 12.86 
PSA 6.28 PSA 5.86 PSA 6.45 
NRING 4.78 NRING 5.30 NRING 6.15 
Hacceptors 4.26 Hacceptors 5.12 Hacceptors 5.02 
ROT 3.11 ROT 4.50 ROT 4.61 
LogD 3.04 LogD 3.86 Hdonors 3.00 
Hdonors 2.63 Hdonors 2.86 LogP 2.80 
LogP 1.84     
Cutpoint 4 
MW 14.32 MW 12.72 MW 12.54 
NATOM 8.18 NATOM 8.95 NATOM 8.31 
ROT 4.16 ROT 4.55 ROT 5.04 
Hacceptors 3.70 PSA 4.36 Hacceptors 4.41 
NRING 3.45 Hacceptors 4.11 NRING 4.24 
PSA 3.22 NRING 3.94 PSA 3.80 
LogD 2.03 LogD 2.59 LogP 2.57 
LogP 1.77 Hdonors 1.69 Hdonors 1.93 
Hdonors 1.69     
Cutpoint 5 
MW 5.07 MW 4.57 MW 4.59 
Hacceptors 4.47 PSA 4.16 PSA 4.37 
PSA 3.99 Hacceptors 4.06 Hacceptors 4.19 
ROT 2.77 ROT 3.25 ROT 3.02 
LogD 2.14 NATOM 2.57 NATOM 2.58 
NATOM 1.94 LogD 2.54 LogP 2.06 
NRING 1.79 NRING 1.81 NRING 1.95 
LogP 1.53 Hdonors 1.48 Hdonors 1.43 
Hdonors 1.26     
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