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Abstract: This paper presents a fleet management model for military aircraft that generates daily flying 

and maintenance allocations.  This model has two novel features that distinguish it from previous models of 

fleet management in the literature.  Most notably, random unscheduled maintenance is integrated with an 

optimisation approach.  This is important, as unscheduled maintenance is a regular occurrence in day-to-day 

military aircraft fleet management, thus limiting the ability of deterministic models to provide useful 

guidance.   Furthermore, the model is designed to discover policies that dynamically adapt to random events 

to deliver optimal fleet serviceability.  Other features of the model include flying-hour based phased 

maintenance with variable induction (day when maintenance begins), day-based regular inspections, and 

separate phased and flight-line maintenance facilities with both manpower and line capacity constraints. 

In the model, serviceable aircraft fly up to a specified number of hours per day.  Once a certain number of 

flying hours has been achieved, those aircraft must begin phased maintenance within an allowable induction 

range.  Regular inspections are an additional type of scheduled maintenance based on elapsed time.  Phased 

maintenance typically takes a few hundred maintenance man hours, whereas regular inspections take tens of 

man hours.  Two types of maintenance facilities are included.  Phased maintenance can only be undertaken 

on the phased maintenance line, and regular inspections are typically undertaken on the flight line. If a 

regular inspection is due at the same time as a phased service, these can be performed concurrently.  

Unscheduled maintenance is undertaken in flight line maintenance if incurred on serviceable aircraft, or in 

either facility if discovered during the course of scheduled maintenance. 

We use Approximate Dynamic Programming (Powell, 2011) to formulate the decision making model.  The 

objective is to find the policy that maximizes the expected value of the contribution function.  Our 

contribution function seeks to maximize the flying hours achieved and maintenance throughput of the fleet 

over a time period, with a weighting factor balancing these priorities.  Decision variables include the 

allocation of flying hours and maintenance man hours per aircraft per day, and when aircraft are inducted into 

phased maintenance.  The model consists of 75 sets of constraints describing: the allocation of flying hours to 

serviceable aircraft and maintenance man hours to aircraft in maintenance; the allocation of different 

maintenance types to aircraft in different maintenance facilities; and state transition tests to determine when 

aircraft are eligible or required to begin or end types of maintenance.  The unscheduled maintenance 

constraints include an exogenous stochastic variable that represents the daily amount of new unscheduled 

maintenance generated randomly from a lognormal probability distribution.  Aircraft are allowed to carry 

forward a limited amount of unscheduled maintenance while remaining serviceable.  However, once a 

specified level of unscheduled maintenance is exceeded, the aircraft must undergo maintenance at an 

appropriate maintenance facility until the outstanding unscheduled maintenance is reduced to a required 

level. 

In Approximate Dynamic Programming, a policy is a function that returns a decision, given the current state 

of the fleet (in the present context).  We consider a deterministic look-ahead policy that depends on a 

discount factor and a look-ahead time horizon.  We undertake computational experiments with a squadron of 

12 aircraft over a 180 day period, with time horizons ranging from 1 to 14 days and discount factors from 0.8 

to 1.  Indicative simulation results are presented, where the time horizon substantially dominates the discount 

factor with respect to influence on the mean total flying hours achieved.  While longer time horizons produce 

larger optimal objective values for a given parameter set and random data, simulation results may not 

significantly differ when compared with shorter time horizons due to random variation.  This is apparent in 

our results, demonstrating the potential for substantial savings in computational time. 
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1. INTRODUCTION 

1.1. Military aircraft fleet management 

Managing a fleet of military aircraft is an inherently complex task.  The life of a military aircraft fleet is 

typically 20-30 years.  Over the fleet life, there are numerous requirements to be met, both by the whole fleet 

and for the individual squadrons within the fleet.  Every year, each squadron will need to meet a number of 

flying requirements, for instance, to train aircrew and meet operational requirements.  Furthermore, if there 

are emergencies such as natural disasters, governments may call on the military to assist, at which time it is 

expected that the military will be able to respond as requested.  Consequently there is an implicit requirement 

for squadrons to have a sufficient number of aircraft available to be deployed at short notice in such 

situations.   

These flying requirements need to be achieved while also meeting the fleet’s maintenance requirements.  The 

scheduled maintenance regime consists of several types, based on both elapsed time and achieved flying 

hours.  Regular inspections are both time-based (e.g., daily, weekly, etc.) and flying hours-based and usually 

take 1-2 days to complete; only time-based regular inspections are considered here.  Phased maintenance is 

flying hours-based and may take a few hundred maintenance man hours (MMH) to complete, equating to a 

period of days or weeks.  Finally, deep or depot maintenance usually occurs every few years or several 

hundred flying hours, and may take weeks or months to complete; this is not considered in the present model.  

In addition, unscheduled maintenance arises regularly to disrupt the plans made by fleet managers.  

Unscheduled maintenance requirements may be discovered before an aircraft is scheduled to fly, thus 

rendering the aircraft unserviceable, or it may be discovered during the course of scheduled maintenance, 

thus delaying the return of the aircraft to a serviceable state.  Different maintenance facilities handle the 

different maintenance types, and some types of services may be combined.  Given all of these factors, fleet 

planners and managers make daily decisions about which aircraft to fly and how much, and which to 

maintain and how much in order to meet ongoing requirements.   

1.2. Literature review 

The literature in this area is relatively new compared with civilian applications.  Civilian and military aircraft 

fleet managers have different objectives and constraints.  Civilian aircraft fleet managers are typically 

concerned with maximizing profits, with aircraft flying point-to-point between various cities.  The objectives 

in military aircraft fleet management are more concerned with maximizing aircraft availability or the number 

of flying hours achieved, with decisions regarding which aircraft to fly each day and how much.   

Most of the literature on military aircraft fleet management concentrates on purely deterministic applications, 

using mathematical programming techniques to develop a flying and maintenance plan over a given time 

horizon.  A Masters thesis from the Naval Postgraduate School (Pippin, 1998) developed a mixed integer-

linear program (MIP) in order to minimize the deviation from the ‘goal line’ for a US Army helicopter fleet.  

The ‘goal line’ is a visual planning aid that tracks and sorts individual aircraft and their flying hours 

remaining until their next phased service, to enable a steady flow of aircraft into maintenance.  This has been 

extended (e.g., Kozanidis et al., 2012) by seeking to generate flying and maintenance plans over multiple 

time horizons (here, a monthly plan for six months) while maximizing aircraft availability (i.e., the total fleet 

hours remaining until phased maintenance).  These authors (Gavranis and Kozanidis, 2015) then exploited 

the limited number of aircraft combinations that can begin and end phased maintenance to develop an exact 

solution to this problem.  A US Coast Guard study (Hahn and Newman, 2008) used a MIP to generate an 

optimal weekly plan for 12 weeks for a helicopter fleet. Phased maintenance is included and helicopters may 

be deployed to two separate locations.  The objective is to minimize helicopter movements (e.g., between 

deployed and non-deployed) with penalties for not meeting flying requirements.  Other papers apply MIPs to 

plans that consider daily requirements: one paper (Cho, 2011) develops a twice-daily plan with two fixed-

sortie types for 15 aircraft over a one-year horizon while minimizing the maximum number of aircraft in 

maintenance; while another paper (Marlow and Dell, 2017) develops a daily plan for various time periods (20 

and 30 days) and aircraft numbers (12 and 24), incorporating both phased maintenance and regular 

inspections with the aim to balance multiple requirements, including daily and total flying hours 

requirements as well as a type of ‘goal line’ maintenance stagger at specified days. 

Other work in this field has included unscheduled maintenance.  The initial focus (Mattila et al., 2008) has 

been developing discrete-event simulation models incorporating various types of scheduled maintenance, 

with the focus on average availability.  These authors next apply a reinforcement learning approach (Mattila 

and Virtanen, 2011) in order to either maximize the availability over an infinite time horizon, or exceed a 
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target availability level over a finite time horizon, in conflict conditions.  They test various optimization 

policies based on determining the best time to induct an aircraft into maintenance (which may include 

delaying entry).  They also seek to develop a decision support tool (Mattila and Virtanen, 2014) combining 

their discrete-event simulation model with a multi-objective simulated annealing algorithm, with the aim to 

both maximize average aircraft availability and minimize deviation from the desired maintenance schedule.   

1.3. Aim of this work 

The literature review describes deterministic MIP models used to generate flying and maintenance plans.  

When unscheduled maintenance arises, these plans will have to be adjusted and the shorter the planning 

horizon, the greater the impact on these plans.  The simulation models surveyed incorporate unscheduled 

maintenance, but do not focus on generating flying and maintenance plans.   

Hence the primary aim of this work is to present a model that seeks to optimally manage a military aircraft 

fleet while explicitly including unscheduled maintenance.  We therefore require an approach that combines 

simulation (to model random unscheduled maintenance) and mathematical programming in order to 

determine optimal policies for an aircraft fleet, similar to the testing of maintenance policies described 

previously (Mattila and Virtanen, 2011).  Such a model can provide fleet planners with the ability to make 

decisions that improve outcomes while explicitly incorporating uncertainty. 

All features of the present model cannot be described in this paper due to space limitations; instead, the key 

elements are introduced. 

2. MODEL DESCRIPTION 

We consider a single squadron containing a fixed number of aircraft operating in peacetime.  Aircraft may fly 

up to a maximum number of hours per day when they are serviceable.  Unserviceable aircraft (i.e., those in 

scheduled or unscheduled maintenance) are unable to fly. 

We include two types of scheduled maintenance: regular inspections (RI) (based on elapsed time) and phased 

maintenance (PM) (based on flying hours).  These maintenance events may be combined where possible.  

Aircraft become unserviceable when a RI is due, whereas aircraft may be inducted into PM with some 

flexibility around the specified flying hours since the previous PM.  Depot maintenance and services that can 

be completed within a day, and not affect the flying program, are not included in the model.   

The different types of maintenance are performed at separate maintenance facilities.  PM occurs at the phased 

line maintenance (PLM) facility, while regular inspections occur at the flight line maintenance (FLM) 

facility.  When PM occurs at the PLM facility, RI (if due) may also be combined with the phased service.  

Scheduled maintenance must be completed in blocks; i.e., once work on scheduled maintenance begins, it 

cannot stop until the maintenance is complete.  Aircraft queue for maintenance if there is no spare capacity at 

a maintenance facility.   

Unscheduled maintenance (UM) has two components: time between failures and time to repair (duration).  

Both are modelled as lognormal probability distributions, based on previous analysis of aircraft data (Marlow 

and Novak, 2013).  UM may be undertaken at the FLM facility (either when an aircraft fails, or is combined 

with a regular inspection) or at the PLM facility (either when an aircraft that is eligible for PM fails, or when 

UM is discovered on that aircraft during a phased service). 

New UM MMH requirements for each aircraft are revealed at the start of each day according to the input 

probability distributions.  Aircraft are permitted to accumulate a specified amount of carried forward 

unserviceability (CFU) in MMH while remaining serviceable.  However, once the CFU MMH threshold is 

exceeded, these accumulated MMH become the UM requirement and the aircraft must undergo maintenance 

in order to return to a serviceable state.  All UM requirements are considered equally important in the present 

model, and hence urgent UM requirements cannot be identified. 

3. MATHEMATICAL METHOD AND MODEL FORMULATION 

3.1. Approximate dynamic programming 

We use Approximate Dynamic Programming (ADP) (Powell, 2011) to formulate the decision making model.  

ADP is a family of methods for solving sequential stochastic decision making problems by finding the best 

policy (decision function) from a given class of policies, with respect to an objective function.  The present 

ADP formulation incorporates aspects of mathematical programming, including an objective function, 
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constraints and decision variables.  In addition, it contains state variables (that hold the information needed to 

make a decision), a transition function (that governs how, in this case, the system of constraints transition the 

state variables from their current values to their next at each time step), and exogenous information (in this 

case, the unscheduled maintenance).   

The objective function is 

max

 

| |

0

( , ( ))
T

t t t

t

C S X S



 ,       

where ( , ( ))t t tC S X S is the contribution function and ( )t tX S  is the policy (decision function) indexed by 

 in the admissible set of policies for state 
tS .  There are many different policy types (choices of admissible 

policies), including policy function approximations, value function approximations, myopic policies, and 

deterministic and stochastic look-ahead policies (Powell, 2014).   

3.2. Formulation 

The model is described by (for sets of aircraft a A and time t T  in days): 

 Decision variables, which take two possible forms.  Firstly, 
,

e

a tx  is used for continuous variables, where 

the ‘e’ superscript can be: f  when representing aircraft able to fly; pm, plm,ri and plm,um for aircraft in 

phased maintenance (undergoing PM, RI or UM respectively); and flm,ri and flm,um for aircraft in flight 

line maintenance (undergoing either RI or UM). Secondly, 
,

e

a ty  represents binary variables, e.g., 
,

,

en pm

a ty is 

1 when an aircraft enters phased maintenance and 0 otherwise.  The caret symbol (^) indicates the 

decision variable takes affect at the end of the day; otherwise it takes affect at the beginning of the day.  

 State variables, which encode the information required at a particular time t to model a system from that 

time onwards.  These also take two possible forms: 
,

e

a t
R for continuous variables, e.g., 

,

,

f pm

a t
R  for the flying 

hours accrued since the last PM; and 
,

e

a t
S  for binary variables, e.g., 

,

pm

a t
S  is 1 if an aircraft requires PM 

and 0 otherwise.  A caret symbol indicates the state variable is measured (or observed) at the end of the 

day, otherwise it is measured at the beginning of the day. 

 Parameters, where c
i
 represents continuous values with units, and n

i
 discrete dimensionless values. 

Due to space limitations, we are unable to show the full formulation in this paper.  However, we will 

endeavour to describe the key elements.  The contribution function is 

     , , , , , ,

, , , , , , , ,

max max

1 1 1
( , )

| | 2

f
f pm plm ri plm um flm ri flm um bl plm bl um

t t a t a t a t a t a t a t a t a tF plm flm
a A

w
C S x x x x x x x B B

T c c c





 
        

 
  

The contribution function is a weighted sum of flying hours (first term in parentheses with weighting
fw ), 

MMH (second and third terms), and a penalty for not performing PLM and UM on an aircraft on consecutive 

days.  All terms are scaled such that they are dimensionless, e.g., c
F
 is the maximum flying hours per aircraft 

per day.  Hence the objective function maximizes both the flying hours and MMH achieved. The MMH 

terms remove a symmetry that arises when aircraft are unserviceable beyond the solution time horizon. 

The model contains 13 | || |A T decision variables, 28 | || |A T state variables, and (75 | || |)O A T  constraints.  

These constraints may be divided into three main categories: 

 Flying hour and MMH allocations that limit the allocated flying hours or MMH to within specified 

ranges.  For phased maintenance, these are 
min , , max ,

plm pm pm plm pm

a t a t a tc y x c y  , where 
,

pm

a ty  is a binary decision 

variable that takes the value 1 when phased maintenance is being undertaken.  Extra constraints model the 

combinations of maintenance types at the allowed maintenance facilities.   

 Maintenance facility allocations that determine when and where maintenance can be undertaken.  The 

constraints are generally of the form 
, ,

pm plm

a t a ty S  that state an aircraft undergoing PM must be on a phased 

maintenance line (PLM).  Due to the allowable combinations of maintenance at different facilities, more 

complicated constraints are used: e.g., 
, , ,

flm ri um

a t a t a tS S S   states that an aircraft must require at least one of 
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an RI or UM to be in FLM, and
, , , 1flm plm s

a t a t a tS S S    forbids an aircraft from being in multiple facilities 

(and serviceable) simultaneously.  Additional constraints track maintenance capacity to ensure this is not 

violated at the different facilities. 

 State transitions that determine when aircraft enter (en) and exit (ex) the state of requiring different types 

of maintenance.  For PM, 
, ,

, , 1 ,
ˆ ˆf pm f pm f

a t a t a tR R x   and 
, , ,

, 1 , , , 1
ˆ ˆ ˆf pm f f pm en pm

a t a t a t a t

PR x R c y    track the flying 

hours since the last PM.  The constraints
, ,

, ,
ˆˆ /en pm f pm p

a t a ty R c  and 
, ,

, ,
ˆ ˆ( 1)f pm f en pm

a t a t

PR c c y    then 

work together to allow an aircraft to begin PM when
,

,
ˆp f pm

a t

Pc R c  , where 
fc  is the minimum flight 

duration immediately before entering PM.  The constraints take a similar form for ending PM and 

beginning and ending RI.  Other constraints of the form 
, ,

, , 1 , 1 , 1
ˆˆpm pm en pm ex pm

a t a t a t a tS S y S      ensure aircraft 

can only be in allowable states at allowable times, such as when they begin and end maintenance. 

A significant feature of the formulation is the model of UM.  Three representative UM constraints are: 

. ,

, , 1 , 1 , ,
ˆ ˆ ˆum um um plm um flm um

a t a t a t a t a tR R W x x       ,a A t T       

,

, ,
ˆ um cfu en um

a t a tR c S      ,a A t T    

, , ,
ˆ ( )um cfu um cfu um

a t a t a tR c M c S      ,a A t T    

The first set of constraints tracks the amount of UM required for each aircraft each day, where 
, 1

ˆ um

a tW 
 

represents the new UM MMH added to an aircraft the previous day.  This is generated from a probability 

distribution and is thus exogenous information to the model.  The second and third sets of constraints prevent 

an aircraft from beginning UM if
,

ˆ um cfu

a tR c .  The third set of constraints use a “big-M” parameter, in part, 

because
,

ˆ um

a tR may be very large given the right-tailed distribution used to generate the values of 
,

ˆ um

a tW , although 

we have derived a time and aircraft-dependent tight bound.  For an aircraft to end UM,
,

ˆ um um

a tR c ; these 

requirements are enforced with constraints similar to those above. 

4. INDICATIVE RESULTS 

4.1. Policies and inputs for computational experiments 

To demonstrate the utility of the model, we consider a deterministic look-ahead policy model (Powell, 2014), 

which has the form 

( )t tX S  arg min
tx

'

' '

' 1

( , ) ( , )
t H

t t

t t tt tt

t t

C S x C S x




 

 
 

 
 , 

where the index t  indicates a base-model variable (these are implemented at the end of day t ), and 'tt  

indicates a look-ahead variable (these are discarded at the end of day t ). Look-ahead policies optimize over a 

time horizon ( ,..., )t t H .  The model implements the decision for the first day, then solves again over the 

time horizon, and so on. Deterministic look-ahead policies use a point estimate to forecast new UM events. 

We assume no new events in the forecast of UM, since this performed well and had improved numerical 

stability, due to smaller “big-M” values, in comparison with using a running mean during initial testing. 

We consider a squadron of 12 aircraft operating over a 180 day period.  Aircraft can fly up to 6 hours per 

day.  Aircraft must begin PM between 180pc   and 220Pc   flying hours (inclusive) and require 300 

MMH to return to serviceability.  RI are required every 7 days for 10 MMH.  There is a total of 150 MMH 

available each to both FLM and PLM, with a maximum of 50 MMH per aircraft per day, and a capacity of 3 

maintenance lines each 4.2.for FLM and PLM.  UM time between failures are drawn from a lognormal 

distribution with 3  and 1  , while the time to repair lognormal parameter values are 1   and 1.25  .  

Aircraft must undertake UM when 20cfuc   and return to serviceability when 5umc  .  In our contribution 
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Table 1. A summary of results for the top 6 combinations of time 

horizon and discount factor, and the myopic policy (H = 0). 

Time 

horizon 

Discount factor Flying 

hours 

(mean) 

Flying hours 

confidence interval 

width (%) 

11 0.90 7355 3.38 

9 0.95 7325 3.57 

13 0.90 7321 3.04 

14 0.80 7306 3.26 

7 0.90 7303 4.05 

14 0.90 7303 3.69 

0 NA 3934 6.28 (576 runs) 

 

function, we set
min max min max0.01 0.5( / ) 0.5( / )plm plm flm flmc c c c     and 𝑤𝑓 = 10.  We initialise the squadron with 

7 aircraft serviceable, 3 in phased maintenance and 2 in regular inspections, with the aircraft ‘staggered’ in 

each state, e.g., the 9 aircraft not in PM are all separated by 20 flying hours. 

We consider two parameters for our policy search: the time horizon H (from 1 to 14 days), and a discount 

factor   (ranging from 0.8 to 1).  We wish to determine which combination of time horizon and discount 

factor produce the maximum expected flying hours, as shown in the objective function and implied by the 

choice of 𝑤𝑓 = 10.  We use the given values of H and discretize the discount factor by steps of 0.05, giving 

a total of 70 design points for the experiments, which were conducted on a computer with an Intel
®
 Xeon

®
 

2.6 GHz CPU with 64 GB of RAM running Ubuntu 16.04LTS.  The model was coded in Pyomo 5.0.1 and 

the solver was Gurobi
®
 7.5.0.  Using 24 cores, all 96 runs of the 14 day rolling horizon case takes 

approximately 90 minutes to solve with an optimality gap of 1% (for each day); cases with a smaller discount 

factor run faster than those with a larger value.  We performed 96 runs at each design point as this is a 

multiple of the 24 cores, and results in the widths of the 95% confidence intervals being less than 5% relative 

to the mean. 

Figure 1 provides indicative schedules from a single run (days 15-29) for one design point to demonstrate 

how the model works in practice.  The table on the left (a) shows the values for
,

,
ˆ f pm

a tR , while the table on the 

right (b) is for
,

ˆ um

a tR .  Green represents a serviceable aircraft, blue is an aircraft in PLM, orange is an aircraft 

in FLM, and red is an idle aircraft, i.e., neither flying nor being maintained.  Given the objective, aircraft 

generally fly at the maximum rate.  

Figure 1(a) shows how aircraft 

begin PM at different values of
,

,
ˆ f pm

a tR : aircraft A10 after 218 

flying hours; A9 at 216 flying 

hours.  RI occur on A4 on day 17, 

A3 on day 18, etc.  The impact of 

UM is seen in Figure 1(b): aircraft 

A8 has 1763 MMH of UM 

remaining at the end of day 16 

when previously serviceable; and 

aircraft A10 incurs at least 573 

MMH during a phased service on 

day 21.  The UM constraints are 

clearly evident for aircraft A1: on 

day 16 it has 64 MMH of UM 

remaining at the end of the day, then a further 100 MMH is remaining on day 19.  Aircraft with large 

remaining UM MMH are given a lower maintenance priority compared with aircraft requiring services that 

can be completed more quickly, thus generating more flying hours; this follows from the form of the 

contribution function.   

  

Figure 1. Sample output from a single instance for a single design point showing (a) the accumulated flying 

hours since the last PM and (b) the remaining accumulated UM MMH  
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Table 1 shows the 6 best mean total flying hours results, together with the myopic policy. Observe that the 

best case with a time horizon of 11 and that with a horizon of 7 are not significantly different; this indicates 

the potential for savings in computation time. In fact, the top 6 results are not significantly different from 

each other. While longer time horizons will produce larger optimal objective values for a given parameter set 

and random data, simulation results may not significantly differ when compared with shorter time horizons 

due to random variation.  Additional statistical analysis indicates the length of the time horizon has a greater 

influence on the total flying hours than the discount factor.   

5. DISCUSSION AND FUTURE WORK 

We have developed a new fleet management model for military aircraft that explicitly includes random UM.  

The model also includes aircraft flying and scheduled maintenance and can be used to search for policies that 

achieve specified objectives.  Incorporating UM gives this model much greater fidelity than deterministic 

models in the highly dynamic and uncertain environment of military aircraft fleet management. 

Future work will explore the use of additional policies, such as stochastic look-ahead policies (Powell, 2014), 

to determine which policies best meet fleet objectives.  It will also include more comprehensive tests of 

policy parameters, such as longer time horizons and representing the discount factor as a continuous variable.  

Such extensions may warrant a more thorough treatment using simulation experimental design techniques.  
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