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Abstract: We present an inventory model for a firm facing a price-sensitive demand rate and in which the 
deterioration rate of item is constant. For this constant rate of perishable inventory model, we incorporate a 
return rate of used items which accounts for the impact of reused products on inventory decisions. We broaden 
the model scope by allowing two cases of purchase payments: payment at the time of delivery and prepayment 
before delivery. The model is developed and analysed under a cost function which is linear with respect to the 
firm's order size and the total-item holding cost. The firm seeks to maximise profit-rate by appropriate choice 
of the price, return rate and cycle length. We present the conditions that guarantee the existence and uniqueness 
of the optimal solutions to the inventory problem. To investigate the application of the proposed model we 
conduct a brief numerical study and set up a sensitivity analysis table to assess the effect of changes in the 
model parameters on the firm's optimal policy. The design serves two purposes. Firstly, it provides an objective 
way of quantifying how the optimal policy response to changes in the model parameters and, secondly, it helps 
to identify the set of changes in the input that yields a new optimal. 
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1. INTRODUCTION 

Harris (1913) introduced the square root-formula of the economic order quantity (EOQ) model for calculating 
the best order quantity a firm should hold so as to minimise the total cost of inventory. Many authors have 
considered several modifications and extensions to the basic EOQ incorporating more realistic factors into the 
model (see, for example, Philip (1974), Deb and Chaudhuri (1987), Detta and Pal (1990), Chang (2010) and 
Sanni and Chigbu (2017)). Most of these extant models ignored the impact of return products via reverse 
logistics program on the inventory decision. Hawks (2006) defined reverse logistics as the process of moving 
goods from the point of destination to the point of origin for the purpose of recapturing value or proper disposal. 
The reverse flow of goods affects inventory level and total inventory cost, and it should be taken into account 
when analysing inventory systems. Gains due to reverse logistics include enhanced customer satisfaction, 
decreased inventory levels and reduced cost.  

The core components of reverse logistics are gatekeeping, collection, sortation, and disposition (Horvath et al 
(2005) and Hawks (2010) which can be collectively referred to as central return centre. The expenses associated 
with the operation of reverse logistic have direct effect on inventory decision. In the recent past, reverse 
logistics has attracted a great deal of attention from researchers in inventory modelling.  

While reverse logistics configuration is new and critical to inventory modelling, demand rate and deterioration 
have long been recognised as essential aspects of inventory model. Bose et al (1998) proposed a finite horizon 
EOQ model for items with linear demand rate and constant deterioration. Taleizadeh (2014a, 2014b) introduced 
a number of EOQ models with constant decay rate and prepayment options. Chen et al (2016) developed an 
EOQ model for inventory system in which return of used product is allowed and in which items in the system 
do not deteriorate. 

In the literature, we have seen that the focus is primarily on methods for determining appropriate order size for 
minimising system cost. In these models, little or no attention is given to the reverse flow of items into the 
inventory.  Hence, the problem of including reverse logistic arrangement in inventory decisions remains largely 
as open research area.  

In this paper, we study the EOQ model with reverse logistics program in a specific form allowing for linear 
demand rate and constant rate of deterioration of items. We formulate an optimisation problem for the firm and 
obtain optimal inventory policy. The results are demonstrated using numerical studies. 

2. MATHEMATICAL MODEL AND ANALYSIS 

We consider the problem of profit maximisation for a firm with reverse logistics scheme. The demand is 
affected by the unit selling price the firm sets for its goods and a constant fraction of items that deteriorate over 
the cycle time. Suppose that the firm wishes to maximise its profits for an appropriate choice of the order size ݕ, the unit selling price ݌  and the return rate parameter ߜ. For ߜ > 0, ܶ > 0 and ݌ > 0, we have ݕ > 0 so that 
the profit consists of revenue from sales of new and returned items and is reduced by purchase cost, holding 
cost and the cost of running the reverse logistic system.  Therefore, for all ܶ > 0 the average profit-rate is given 
by ݌)ߨ, ,ߜ ܶ) = ሾ݌ + (ܾଵ − ܾଶ)ܴ(ߜ)ሿ(݌)ݎ − 1ܶ ሾܽ + ܾ଴݌)ݕ, ܶ) + ܿ଴ℎ(݌, ܶ) + ܿଵ(ߜ)ሿ																																	(1)	 
where  ܾ଴ is the purchase cost per unit of item, ܽ is the fixed cost per order, and ܿ଴ is the carrying cost of item 
per unit per unit time. The parameter ܾଵ represents the unit cost of collecting, holding, sorting and handling a 
returned item, which includes the collection fees paid by the firm to consumers. The parameter ܾଶ is the unit 
price of a used returned product sold by the firm to its supplier, here we assume a positive salvage value ܾଵ −ܾଶ of collected used product.  For similar treatment (see Chen eta l (2016)).  

Some expenses are associated with running a reverse logistic scheme. The investment cost of the firm operating 
a reverse logistic program is assumed to be a quadratic function of the return rate coefficient, ܿଵ(ߜ) =   .ଶߜܿ
This assumption ensures that the incremental rate of the operational cost of the reverse logistic program 
depends on the return rate. Following Chen et al (2016) it is assumed that products sold in the past 
replenishment cycles can be collected in the current replenishment cycle and that the return rate for product 
sold in the past i-th replenishment cycle follows a geometric series with initial value as the return rate 
coefficient ߜ and common ratio 0 ,ߤ ≤ ߤ ≤ 1.  The return rate for the products sold in the past i-th 
replenishment cycle is thus given by ߤߜ௜ିଵ and the sum of the returned rate for used products in the current 
replenishment cycle is represented by ܴ(ߜ) = ∑ ௜ିଵߤߜ = ߜ (1 − ஶ௜ୀଵ⁄(ߤ . It is only reasonable to assume the 
total number of collected used items be non-negative and that this number should not excess the number of 
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product sold in each replenishment cycle.  Thus, the scope of the firm's profit maximisation is limited by the 
constraint  0 < (ߜ)ܴ ≤ 1.  

To determine the inventory level and total-item hold time, let the inventory starts at the order size ݕ which then 
depletes due to the simultaneous effects of demand and deterioration until it becomes empty at the cycle time ݐ = ܶ.  At this time it is replenished by a new order and the process repeats. The equation governing the 
inventory process	݌)ࡵ, ܶ) = ሼ݌|ݐ)ܫ, ܶ)|0 ≤ ݐ ≤ ܶሽ  is  ݌|0)ܫ, ܶ) = ,݌)ݕ ܶ) ݐ݀ܫ݀ ,݌|ݐ) ܶ) + ,݌|ݐ)ܫߠ ܶ) = 0			for all				(݌)ݎ− ≤ ݐ ≤ 	ܶ,																														(2) 
where ߠ is the constant proportion of deterioration of items per cycle time. The solution to the inventory 
equation is: ݌|ݐ)ܫ, ܶ) = (݌)ݎ exp൫ߠ(ܶ − ൯(ݐ − ߠ1 	 	for				0 ≤ ݐ ≤ 	ܶ.																																																																															(3) 
The order size and the total item-holding time are given respectively by 

,݌)ݕ ܶ) = (݌)ݎ exp(ܶߠ) − ߠ1 , ℎ(݌, ܶ) = න ,݌|ݐ)ܫ ݐ݀(ܶ = (݌)ݎ exp(ܶߠ) − ܶߠ − ଶߠ1 .																				(4)்
଴  

Putting Eqn (3) and Eqn (4) into Eqn (1), we can write the profit function for the firm as ݌)ߨ, ,ߜ ܶ) = ൭݌ + (ܾଵ − ܾଶ)ߤߜ + ܿ଴ߠ − ܶߠ1 ቀܾ଴ + ܿ଴ߠ ቁ (exp(ܶߠ) − 1)൱ (݌)ݎ − ܽ + ଶܶߜܿ .																								(5) 
There is no explicit solution for the decision variables using the profit function in Eqn (5) because of the 
presence of 1 ⁄(ܶߠ)  and exp(ܶߠ) in the function which do not augur well for solving explicitly for ܶ.  The 
exact solution for the cycle length ܶ	 can be described in terms of the Lambert ܹ-function, also called the 
Product Log function. Although it is possible to obtain the exact solution using iterative schemes, we adopt 
quadratic approximation of the exponential term for the sake of analytic and computational convenience. Some 
authors have favoured this approach (see, e.g., Taleizadeh (2014a)). For specific structure of the rate of 
withdrawal of items from the inventory system, let the firm possess a linear demand rate (݌)ݎ = ݉ − ,݌)ߨ where ݉ is the fixed demand and ݇ is the elasticity coefficient, the average profit-rate for this model is ݌݇ ,ߜ ܶ) = ൭݌ + (ܾଵ − ܾଶ)1ߜ − ߤ + ܿ଴ߠ − ቀܾ଴ + ܿ଴ߠ ቁ ൬1 + ൰൱ܶߠ12 (݉ − (݌݇ − ܽ + ଶܶߜܿ .																											(6) 
Therefore, the optimisation problem the firm is facing is max௉,ఋ,்வ଴ሼ݌)ߨ, ,ߜ ܶ)ሽ subject to 0 < (ߜ)ܴ ≤ 1. 
The firm seeks to maximise the average profit rate by appropriate choice of the price (݌), return rate	(ߜ) and 
cycle length (ܶ),	which by Eqn (4) determines the order size. We solve the optimisation problem by 
considering four possible scenarios.  Firstly, we consider the price level and the return rate to be fixed 
exogenous values and we determine the optimal cycle length for a given price and return rate. Secondly, we 
determine the optimal price level for a fixed cycle length and return rate. Thirdly, we consider the price level 
to be a fixed exogenous value and we will determine the optimal cycle length and optimal return rate. Finally 
we will consider the case where the price level, the return rate and the cycle length are all decision variables 
limited only by the return rate constraint. The following propositions give the solutions to all the four cases 
mentioned above (all proofs in appendix).  

Proposition 1. For any given price level ݌ and fixed return rate	ߜ, the optimal cycle length for the firm is given 
by 

෠ܶ = ඨ2(ܽ + ଶ)ܿ଴ߜܿ + ܾ଴ߠ . 1݉ −  (7)																																																																																																																						.݌݇
Proposition 2. For any fixed cycle length and return rate, an endogenous price level is given by ̂݌ = 12݇ ൥݉ − ݇ ൭(ܾଵ − ܾଶ)1ߜ − ߤ + ܿ଴ߠ − ቀܾ଴ + ܿ଴ߠ ቁ ൬1 +  (8)																																																									൰൱൩.ܶߠ12
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Proposition 3. For a fixed exogenous price level, the optimal cycle length and the optimum return rate are 
respectively given by  

෠ܶ = ඨ 2ܽ(݉ − ሾ(ܿ଴(݌݇ + ܾ଴ߠ) − ߰ሿ																																																																																																											(9ܽ)	
መߜ = (ܾଵ − ܾଶ)(݉ − 1)2ܿ(݌݇ − (ߤ ෠ܶ ≤ 1 −  									(9ܾ)																																																																																																															,ߤ

where ߰ = (௕భି௕మ)మ(௠ି௞௣)ଶ௖(ଵିఓ)మ . 
Remark: If the optimal return rate ߜመ  falls outside the interval (0, 1 −  ሿ, violating the scope of optimisation, itߤ
is set as ߜመ = 1 −  .and then proceed to obtain a new optimal cycle length ߤ

Proposition 4. If the price level, the return rate and the cycle length are decision variables and are endogenously 
determined by the firm, then the optimal solutions can be obtained using Karush-Kuhn-Tuckers’ (KKT) 
conditions as follows; 

We construct the Lagrangian: ℒ(݌, ,ߜ ܶ, (ߣ = ,݌)ߨ ,ߜ ܶ) − ߣ ൬1 − 1ߜ −  (10)																																																																																								.		൰ߤ
Then the KKT necessary conditions for a point be maximum are obtained (see appendix).  

The conditions for payment of items and their impact on the unit purchase cost can affect the firm’s inventory 
policy. Prepayment is an essential option of procurement.  Similar to Taleizedah (2014a), we define the 

prepayment as ܾ଴∗ = ܾ଴ ቂ1 + ఈ௩௜௡ ቀ௡ାଵଶ ቁቃ , where ݊ is the fixed number of prepayments at equal interval of ݒ 

times apart, ߙ	is the proportion of purchase cost to be paid as multiple advanced payment and ݅ is the capital 
cost rate per unit time . With prepayment, the unit cost ܾ ଴ in the profit function is replaced with the prepayment 
formula	ܾ଴∗. 
3. NUMERICAL STUDY 
Example 1. An inventory problem with prepayment option, Logistic program and constant decay is studied. 
We consider a distributor of certain electronic product is reviewing its inventory policy for one particular 
model. The distributor’s supplier requires it to prepay 40% of the purchase cost by making a series of 3 fixed 
prepayments at equal interval of 0.2 year.  The demand for the product is 800 unit per month with elasticity 
coefficient of	0.65.  The other relevant inventory data are: ܽ = $60 per order,	ܾ଴ = $12 per unit, ܾଵ = $3.5 
per unit, ܾଶ = $1 per unit, ܿ଴ = $0.05 per unit per year, ܿ = ߤ , 125 = ߠ ,0.15 = 0.1. ݅ = $0.35 per year.  

Using the solution in Eqn (10) we obtain the optimal return rate ߜመ = 0.8, and the optimal price ̂݌ = $620.56, 
and other outcomes are: ݕො = 299.082 units	 ෠ܶ = 0.7270 ෝ	ߨ = $241,840. 67. 
Figure 1 shows the firm’s profit function for various prices and return rates. 
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Figure 1. Profit function with respect to price and return rate. The concavity of the profit function with 
respect price and return rate indicates that unique global optimal policy exist. 

Example 2. An Inventory problem with logistic program, constant decay and no prepayment option is studied. 
Consider the inventory data from Example 3 of Chen et al (2016):	ܾ଴ = 10, ܾଵ = 3	,  ܾଶ = 1, ܿଵ = 10000, ܽ = 3000, ܿ଴ = ߤ ,0.8 = 0.2 and the demand function is (݌)ݎ = 1000 −  In addition let a constant  .݌15
fraction of the on-hand inventory deteriorate per unit time ߠ = 0.3. 
Using the solution in Eqn (8) and Eqn (9) we obtain the optimal return rate ߜመ = 0.0843, and the optimal price ̂݌ = $40.15, and other outputs are: ݕො = 879.09 units	 ෠ܶ = 1.6955 ෝ	ߨ = 8735.41. 
In comparison, it is observed that the model proposed in Chen et al (2016) which ignores the impact of 
deterioration of items overestimates the optimal return and the optimal order size, and underestimate the 
optimum unit selling 
price.  

In order to gain more 
insight of the above 
model we perform 
sensitivity analysis on 
some input parameters 
by generating a table 
that shows what the 
optimal solutions would 
be if the true inputs were 
each as given in Table 1. 

From Table 1 when the 
deterioration rate	ߠ =0.00001, the solutions 
are closely similar to the 
results in Chen et al 
(2016) where the impact 
of deterioration was 
completely ignored. 
Further, it can be seen 
that the optimal profit 
rate decreases as the deterioration rate increases. An increase in the reverse logistics investment scaling 
parameter leads to a decrease in profit. 

  

Table 1. Sensitivity analysis on the deterioration rate and the investment scaling  
parameter 

 New optimal values 

Inputs  ෠ܶ  ොߨ∆% ොߨ መߜ ̂݌ ොݕ 

 1 × 10ିହ 4.6416 1929.057 38.96 0.2411 10742.99 +22.98% 13.27%+ 9894.50 0.1372 39.49 1259.395 2.6922 0.1 ߠ 

 0.2 2.0446 1015.941 39.85 0.1028 9265.76 +6.07% 

 2 0.5965 405.823 43.11 0.0263 3281.16 −62.44% 

 1000 1.8005 976.555 39.40 0.8000 9131.80 +4.54% ܿ 4000 17181. 898.570 40.02 0.2146 8799.01 +0.73% 

 12000 1.6931 876.998 43.11 0.0701 8728.43 −0.08% 
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4. CONCLUSION 

We introduced an economic order quantity (EOQ) model with reverse logistics strategy for deteriorating 
products. We examined the impacts of deterioration of items and reverse logistics program on inventory 
management decision. Our work complements the EOQ literature by showing that prepayments options, 
investment in reverse logistics program and deterioration of items affect the firm’s optimal choices. 

We confirm the analytical results using numerical studies. Sensitivity analysis table is presented to show how 
the firm’s optimal policy respond to changes in model input values. One could further the model by considering 
situation where items have expiry date.  
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APPENDIX 

In this appendix, we set the KKT conditions for the firm’s constrain maximisation problem.  

Consider Equation (10) and taking partial derivative with respect to the relevant decision variable, we have the 
first-order necessary conditions (KKT) for the nonlinear optimisation: ߲ℒ߲ܶ = −12 (ܿ଴ + ݉)(ߠܾ − (݌݇ + ܽ + ܿଵߜଶܶଶ ≤ 0 ܶ ≥ 0 ܶ ቆ−12 (ܿ଴ + ݉)(ߠܾ − (݌݇ + ܽ + ଶܶଶߜܿ ቇ = 0߲ℒ߲݌ = ݉ − 2݇ ൬݌ + 12Ω൰ ≤ 0																															 ݌ ≥ 0 ݌ ቆ݉ − 2݇ ൬݌ + 12Ω൰ቇ = 0߲ℒ߲ߜ = (ܾଵ − ܾଶ)(݉ − 1(݌݇ − ߤ − 2ܿଵܶߜ − 1ߣ − ߤ ≤ 0 ߜ ≥ 0 ߜ ቆ(ܾଵ − ܾଶ)(݉ − 1(݌݇ − ߤ − ܶߜ2ܿ − 1ߣ − ቇߤ = 0߲ℒ߲ߣ = 1ߜ − ߤ − 1 ≤ 0																																																 ߣ ≥ 0 ߣ ൬ 1ߜ − ߤ − 1൰ = 0,

 

where Ω = ቆ(௕భି௕మ)ఋଵିఓ + ௖బఏ − ቀܾ଴ + ௖బఏ ቁ ቀ1 + ଵଶ  is the Lagrange multiplier. The resulting systems of ߣ	 and	ቁቇܶߠ

inequalities and equations can be solved to find the optimum values. Sanni and O’Neill (2017) have showed 
for a general class of inventory optimisation problems that the profit rate function is quasi-concave. Thus, the 
KKT necessary conditions are sufficient to guarantee global optimal policy for the firm. 
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