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Abstract: For many researchers there is increasing pressure to collect and analyze bigger datasets, from 
sources such as analytics, online surveys or spatial datasets. Bayesian networks (BNs) provide a feasible and 
intuitive means of developing explanatory models with diverse stakeholders, having limited quantitative exper-
tise. However, when a large number of variables and levels are involved as potential inputs to a BN, the more 
resources are required to evaluate alternative models. Our motivation is to design a large species distribution 
modeling (SDM) experiment, in the Biodiversity and Climate Change Virtual Laboratory. We show how BNs, 
elicited from experts, can be used to inform design of these kinds of large computing experiments.

In this context we examine how settings of some SDM algorithms potentially affect the quality of the predic-
tion. For example, one setting could be the choice of covariates used as input to the SDM, with three levels: a 
minimal, an extensive set or something in between. A conditional probability table (CPT) quantifies the child 
node (e.g. quality of prediction) as it depends conditionally on each of the parents (here settings). Guide-
lines on eliciting CPTs generally advise modellers to simplify the elicitation task by keeping to a minimum 
the number of parent nodes and parent/child states. The literature on BNs indicates that elicitation of more 
complex CPTs may be too demanding for experts, because of the time required.

In the context of large CPTs, an often encountered problem is the sheer amount of information asked of 
the expert (number of scenarios). Here we propose that an elicitation strategy can be designed according to 
statistical criteria: to ensure adequate coverage of the CPTs, in an efficient manner, to make best use of the 
scarce resources like the valuable time of the experts. This is essentially a problem of experimental design.

Some software tools such as CPT calculator support specification of large CPTs, but implicitly adopt a particu-
lar kind of experiment design. Here we conduct experiments to evaluate designs for eliciting expert knowledge 
to help quantify CPTs that define B Ns. We consider three types of design of e licitation: Taguchi as a kind of 
screening design, CPT calculator’s design, and a composite. In the case study, we asked modellers to consider 
how different settings affect the quality of an algorithm used to construct a SDM. Limiting the number of 
scenarios avoids tiring the experts, which can lead to inaccuracies. Eliciting and encoding CPTs was exam-
ined using a model-based “outside-in” Elicitator approach to quantitative elicitation, which allows experts to 
specify their opinions with uncertainty.

Our results determined that the most important settings with the largest positive impacts on the quality of 
prediction were: the choice of real absence data, quadratic complexity of the function and the choice of the 
expert’s minimal subset of variables. In addition, there were differences arising due to the choice of design 
and the elicitation scenarios. Overall, we found that the Taguchi OA design was more efficient because the 
effect sizes estimated for CPT calculator had more uncertainties than for the Taguchi design.
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1 INTRODUCTION

Figure 1. A simple Conditional Probabil-
ity Graph of most important GLM settings, 
where Cov is covariates; Com represents the 
complexity of regression; Cho is choice of 
absences and Lin is link function of inter-
est is how all of these settings will affect the 

quality of prediction QoP.

Species distribution models (SDMs) are techniques that pro-
duce a statistical model for the relationship between a species
and its environment, forming an ecological niche model (Elith
and Leathwick, 2009). These models are using computer algo-
rithms to predict the distribution of species in geographic space
on the basis of data (Reiss et al., 2011). There is an extensive
literature that compares SDM algorithms, but does not neces-
sarily consider the sensitivity to settings. Here, we use this case
study to demonstrate how a Bayesian network can be used to
design a large sensitivity study, and in particular conduct a “risk
assessment” to choose which settings should be investigated.

BNs represent the model using a conditional probability graph
comprising several nodes, and arrows linking nodes. Underly-
ing each link is the specification of a conditional probability dis-
tribution, where one or more parent nodes are related to a child
node, as indicated by a link (Korb and Nicholson, 2010). For in-
stance, Figure 1 is a very simple BN involving four parent nodes
with one child node, and shows how the most important settings
of a SDM algorithm, a generalized linear model (GLM), poten-
tially affect the quality of the results. The nodes are typically
discretized into a number of levels. Here, each node has 3 levels
(Table 1).

Table 1. Four settings of GLM each have three levels
Level Covariates Choice of absences Complexity of regression Link function

Best case 2 Minimal (M) Real (R) Quadratic (Q) Cauchit (C)
1 Between (B) Pseudo Stratified (S) 2-way interactions (2) Gompertz (G)

Worst case 0 Extensive (E) Pseudo CRD (P) Main effects (F) Logit (L)

A conditional probability table (CPT) quantifies this relationship between parents and child node (Korb and
Nicholson, 2010). Generally, these nodes and their conditional parameters θ together define the CPTs such that
θ = Pr(y|parents(y)), where y is the child node. Here in our case (Figure 1), θijkl = Pr(QoPijkl|Cov =
i, Com = j, Cho = k, Lin = l), where Cov, Com, Cho and Lin are parents of the child node QoP ; θijkl
comprises the conditional probabilities; i = 0, 1, . . . , I − 1 is the ith level of Cov, j = 0, 1, . . . , J − 1 is the
jth level of Com and k = 0, 1, . . . ,K − 1 is the kth level of Cho and l = 0, 1, . . . , L − 1 is the lth level of
Lin .

In the context of BNs, the goal of expert elicitation is to discover stet probability distribution p(θ) (Grigore
et al., 2013) which can adequately represent the experts’ opinion and their uncertainty regarding the CPTs.
However, when there are a large number of scenarios in the CPT, it is a challenge to ask experts about each
scenarios. In any event, the elicitation strategy must be based on a proper experimental design (Box et al.,
2005).

This paper will focus on the tailoring of classical design of experiments to choose some scenarios (Section 2.1).
Then, we will examine the methodology of eliciting the CPTs using the Elicitator method, and encoding a
plausible range of values (Section 2.2). Finally, the expert’s knowledge is used to determine which SDM
algorithm settings of GLM have largest impact on quality of prediction (Section 3).

2 METHOD

2.1 Design of elicitation

Statistical experimental design, together with the basic ideas underlying DOE, was developed in the early
1920s from the work of Sir Ronald Aylmer Fisher (Fisher, 1960). In the context of CPTs, which scenarios are
asked could be selected by using principles from the design of experiments, which can help choose questions
strategically both to minimise the number of questions and to cover the area of interest Box et al. (2005).
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Fully factorial design. It is ideal if a fully factorial experiment can be conducted, as all of the data is present
for each node and level, i.e. it consists of all possible combinations of levels for all factors (Antony, 2003).
The total number of parameters (the dimension of θ) defines the minimum number of questions for a fully
factorial designed CPT and can be donated as N = I × J ×K × L. In our case study, each node has three
levels (so, I = J = K = L = 3) and hence, the total number of scenarios would require 3× 3× 3× 3 = 81
questions. However, it is also important to limit the number of scenarios to avoid tiring the experts, which can
lead to inaccuracies, especially here for complex CPTs (Marcot et al., 2006). Here, note how many scenarios
an expert could answer in one setting. This paper will consider three types of design of elicitation: a Taguchi
Orthogonal array design, CPT calculator design, and a composite.

CPT calculator design . CPT calculator is a tool proposed by Cain (2001) that supports experts to quantify
the CPTs that define BNs. This means that scenarios are selected using a one-at-a-time design, where each
scenario changes just one parent level at a time i.e. CPTs are specified by extrapolating from the best and the
nearly best scenario and worst scenarios (Cain, 2001; Antony, 2003). CPT calculator adopts a simple encoding
model to interpolate the CPT from questions about several scenarios. Linear interpolation is used to interpo-
late other scenarios using an interpolation factor (IF). Each IF is calculated for each transition between best
case and changing just one setting. They are all calculated in relation to the difference between the highest
probability for the best case and the lowest one (when all parents are in the worst case). For example, the inter-
polation factor for parent Cov changing from best to worst is IF1 = (θERQC − θEPFL/(θERQC − θEPFL).
The indices ERQCPFL are explained in Table 1. For more detail on these interpolations, see Appendix 2 from
Cain (2001).

In our case study (Table 1), θMRQC refers to the quality of prediction in the best case, M indicates the expert
chooses a minimal subset of covariate, R is the choice of real data, Q is quadratic complexity and C is the
cauchit function. Then θEPFL refers to the quality of prediction in the worst case. There are many CPs
that the expert did not have time to provide and need to be estimated, e.g. the quality of prediction θEPQC .
To calculate these, we perform linear interpolation by multiplying θMPQC (scaled by the lowest quality of
prediction in the worst case θEPFL) by the interpolation factor that is associated with the covariates parent
changing from best to worst case (IF1). We use the equations like: [(θi−1jkl − θ1111)× IF1] + θ1111, where
here θ1111 = θEPFL refers to the worst case.

Taguchi’s Orthogonal Arrays design . Taguchi’s Orthogonal Array design is a classical type of fractional
factorial design (Kacker et al., 1991) and based on the design matrix proposed by Taguchi and Konishi (1987).
An orthogonal array (OA) of h levels (more particularly a fixed level orthogonal array) can be denoted as
OAÑ (hm) and is defined as an Ñ × m matrix, where Ñ is the minimum number of scenarios and m the
number of nodes (settings). The common feature of OA is that each pair of parents has the same number of
possible levels (for more detail, see Kacker et al., 1991). Taguchi OA provides an effective way to consider
a large number of nodes in a minimum number of scenarios (Jugulum et al., 2004), which could give the full
information of all parents (e.g. GLM settings) that affect the child node (i.e. quality of prediction). Performing
a Taguchi’s OA design first can save time particularly for expert, allowing honing of the key settings which
give the highest response (Antony, 2003). To our knowledge, Taguchi OAs have not been considered in the
context of expert elicitation, including of CPTs in BNs. Here, we will use this design to minimise the number
of scenarios used to encode the CPT. The main drawbacks of this design that is there is no continuity between
scenarios, which may make it hard for experts to elicit the probabilities. Taguchi’s OA designs are always
balanced to ensure that all levels from all parents should occur in an equal number of scenarios (Jugulum
et al., 2004).

When designing the elicitation of CPTs, there are many catalogs of Taguchi OA (for more detail, see Kacker
et al., 1991). Here, we use the three-level orthogonal arrays of 3s for s = 2, 3 and 4, where s indexes the basic
columns (parents) in constructing Taguchi OA. The symbols (0, 1, 2) are used to denote the levels of each
node (e.g. Table 1). The columns correspond here to the settings Cov, Cho, Com and Lin, while the elements
of each column defines the level of each setting. In particular, the number of scenarios Ñ of OAÑ (hm) can
be chosen as a subset of all scenarios of a fully factorial design hm. This means that OAÑ (hm) is defined
as a Ñ/hm fraction of a hm. For example, we can use just nine scenarios of OA9(3

4), which is defined as a
9/34 = 1/9 fraction of 34 = 81 scenarios.

There are three steps to conduct the design of elicitation for a CPT using a Taguchi’s OA design, where a
complete three level OA with 3s rows has (3s − 1)/(3 − 1) columns. The first step is to write the basic
columns s determined by the number of columns 1, 2, 5, 14, ..., (3s−1 − 1)/(3− 1) + 1, which would provide
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a complete factorial in s basic factors. The most common format of Taguchi’s OA design makes the inputs
of the leftmost columns change less frequently than the rightmost columns. The next step is to generate the
rest of columns using the generator b1x1 + b2x2 + . . . , bsxs, where x1, . . . , xs are the basic columns and
b1, . . . , bs are the coefficients of a specific factor. Finally, we compute the inputs for the rest of the columns,
using the inputs of s basic columns. For example, Table 2 shows the construction of the Taguchi OA9(3

4)

design, where Ñ = 9 = 32, hence requiring s = 2 basic columns. Note that all levels from the generators
are calculated using modulo 3 arithmetic (because each setting has 3 levels) such that an integer larger than
or equal to three is replaced with its remainder after division by three. For example, for the last row (Cov=2,
Cho=2) the generator x1+x2|3 = 2+2|3 = 1 and 2x1+x2|3 = 4+2|3 = 0. In R programming, we can use
the DoE.base package to create a Taguchi OA design using the oa.design function (Groemping et al.,
2017).

Table 2. Construction of four factors, which each have three levels using Taguchi’s three level orthogonal
arrays design including the generators of other factors.

Factors (columns)
No. of Scenarios Cov Cho Com Lin

1 0 0 0 0
2 0 1 1 1
3 0 2 2 2
4 1 0 1 2
5 1 1 2 0
6 1 2 0 1
7 2 0 2 1
8 2 1 0 2
9 2 2 1 0

Generators =⇒ x1 x2 x1 + x2 2x1 + x2

Composite of CPT calculator and screening designs. This design comes from just combining scenarios of
both the Taguchi’s OA and the CPT calculator designs. This means that the information is doubled, but it also
provides a balance between the ease of the CPT calculator design (e.g. as “warm-up”) and the efficiency of
the Taguchi OA design.

2.2 Eliciting CPTs with their uncertainties

There is a main challenge, on how to present the expert with focused but easy to understand questions that
can provide adequate information (Low Choy et al., 2009). This defining feature of the elicitation protocol-
dictates how the CPT parameters θ = {θlmn;ijk} are elicited. This includes the order, the wording and the
framing which affects the cognitive processes of the experts and hence how they understand what is required
(Low Choy et al., 2009). These issues are typically not discussed in BN literature. For instance, question
wording, as used to elicit θ components, has been provided in few studies where CPTs were elicited (Pike,
2004, is an exception).

Outside-in method (Elicitator method). “Outside-in” is an indirect approach for eliciting probabilities with
uncertainty and was implemented by Low Choy et al. (2010) to quantify expert opinions about various scenar-
ios. It asks for similar questions to the “Four-point” approach (Speirs-Bridge et al., 2010), but in a different
order, with different statistical meaning. For Outside-in, the order of the questions ensures uncertainty is about
the quality of prediction, whereas Four-point addresses uncertainty in the mean quality of prediction. Four
pieces of information are asked in the Outside-in method. This would involve questions like: “We are going
to think about 100 GLMs. Now consider some specific SDM settings defined by a specific set of covariates,
choice of absences, complexity of regression and link function. We want you to tell us what is the smallest and
largest number so that you’re pretty certain, e.g. 80% or 90% or 95% sure, that the quality of prediction falls
between these bounds? If you fit 100 GLMs with these settings, how many would have the quality between
lower and upper quality you gave? What is the quality of prediction for SDMs in the best case, where the
expert chooses a minimal subset of covariate, choice of real data, quadratic complexity of function and the
cauchit function ...”?.

Encoding plausible range of values. The main goal of this way is to transfer the information elicited from
the experts into statistical distributions that reflect the best estimates and their uncertainties (Low Choy et al.,
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2009). Suppose that Yi refers to observations on quality of prediction for each scenarios defined by SDM
settings X1, . . . , XJ . Beta regression can be used to reveal the expert’s mental: estimate the influence of
each setting on the quality of prediction, using information on the estimated quality of prediction for each

scenario i = 1, . . . , n where Yi ∼ Beta(αi, γi), logit(µi) = β0 +
J∑

j=1

Xijβij and µi = αi/(αi + γi),

where µi is the mean, αi and γi describe the expert’s uncertainty about scenario. Using the Elicitator method,
the most important objective is to ask expert about the mode (their best estimates) on a specific scenario.
Mathematically, the expert’s best estimate mi of the quality of prediction Yi is simply related to the Beta
parameters and denoted as m = (αi − 1)/(αi + γi − 2). The challenge is that for each scenario a single
Yi is registered. For i = 1, . . . , n scenarios, there is a distribution p(Yi|Xi, αi, γi) that reflects the expert’s
uncertainty.

In many commercial software packages, beta regression is not allowed to have degrees of freedom νi = αi+γi
changing over data items. Hence, we use a binomial regression to replace the beta regression (for a proportion
with varying sample size), as an easy approximation which retains the information on the estimation as well
as the degree of freedom. A least-squares approach is a simple way of obtaining this (James et al., 2010).
Because of the small number of scenarios, we use a Bayesian regression with non-informative priors (Ellison,
1996). In this paper, the data elicited from expert for both designs was fitted by using Bayesian GLM in R
using the arm package (Gelman et al., 2016).

3 RESULTS

The coefficients and their 95% credible intervals have been compared across the 3 designs (Figure 2), where
the coefficients corresponding to each setting of GLM.

(Intercept)

Cho_Pseudo Stratified

Cho_Real

Com_2−way

Com_Quadratics

Cov_Between

Cov_Minimal

Lin_Cauchi

Lin_Gompertz

−2 0 2

Coefficient

Va
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Design_Name

Taguchi

CPT calculator

Composite both designs

Figure 2. Comparing effects of settings among three designs using estimated coefficients and their 95%
credible intervals from Bayesian GLM.

Using Taguchi OA design to elicit setting-scenarios from the expert, it can be seen that some settings have 
effect sizes (coefficient value) significantly different from zero. Covariates, complexity of regression 
and choice of absences in the best case all increase the quality of prediction since their coefficients are 
larger in magnitude. On the other hand, the “worst” settings of the GLM lower the quality of prediction: link 
function, complexity of regression, choice of absences and covariates have biggest negative impacts on the 
quality of predictions.

Using the CPT calculator, similarity the results showed that some settings such as the complexity of regres-
sion and choice of absences and covariates in the best case increase the quality of prediction because their 
coefficients are larger in magnitude. In contrast, the “worst” case settings of the GLM lower the quality of 
prediction: link function, complexity of regression, choice of absences and covariates have largest negative 
impacts on the quality of predictions.

When both designs are composited, although the relative order of effect sizes is similar across all three designs,
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we found that it has the smallest effect sizes comparing with Taguchi and CPT calculator designs. Furthermore,
the composite design leads to much narrower credible intervals (i.e. decrease ranging from 25% up to 52%
for the Taguchi design and from 37% up to 72% for the CPT calculator design), and hence less uncertainty.
Overall, these outputs demonstrated that the largest positive impacts on the quality of prediction are: (1) the
choice of real absence data or pseudo-stratified absences, (2) the quadratic complexity of the function applied
to covariates and (3) the choice of expert’s minimal selected of variables rather than using an extensive set or
something in between.

On the other hand, the results in Figure 3 illustrate the comparison among the predictions of three designs
compared to values elicited from experts corresponding to all scenarios. It can be seen that there are slight
differences between the predictions of each design compared to elicited values. Most Taguchi predictions have
matched what the expert said (i.e. nearly 14 out of 17). In contrast, there is a slight difference in CPT calculator
predictions compared to elicited values (i.e. nearly 13 out of 17). In addition, we noted that the composite
design has more scenarios, and so it is easier to obtain more accurate results. Although CPT calculator and
Taguchi OA designs have almost the same number of scenarios elicited, the effect sizes estimated for CPT
calculator design have wider credible intervals, and hence greater uncertainty, as shown in Figure 2. Therefore,
the Taguchi OA design yielded more accurate results than CPT calculator, in this situation.
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Figure 3. Comparison for each of three designs with elicitation of only a few scenarios (top plot). The 
predictions of quality of prediction for all scenarios (bottom plot), where the black points refer to the values 

elicited from experts.

4 CONCLUSION AND RECOMMENDATIONS

In summary, we have used a simple BN to examine how settings of some SDM algorithms (e.g. GLM) 
influenced the quality of the prediction. We elicited some scenarios (combinations of settings) in the CPT 
from an expert. Three designs were used to select a few scenarios from the 81 possible: CPT calculator, 
Taguchi OA and a composite of these designs. This aimed to provide a good coverage of all CPTs as well 
as obtain accurate predictions. Our results identified the most important settings defining the CPT entries: 
the choice of real absence data, quadratic complexity of the function and the choice of expert minimal subset 
of variables each have the largest positive influences on the quality of prediction. In addition, we found that 
the Taguchi OA design is more efficient than CPT calculator as it has narrower credible intervals which led 
to more accurate estimation of these influences and predictions. In future work, this paper can be extended 
to evaluate settings for more SDM algorithms with many experts, and to consider alternative designs for the 
scenarios based elicitation.

Alkhairy and Low-Choy, Designing elicitation of expert knowledge into conditional probability tables in Bayesian networks

1074



a systematic review of reported practice in health technology assessment. PharmacoEconomics 31(11),
991–1003.

Groemping, U., B. Amarov, H. Xu, and M. U. Groemping (2017). Package ’doe’ (Design of Experiments).
Available from: http://prof.beuth-hochschule.de/groemping/DoE/.

James, A., S. L. Low Choy, and K. Mengersen (2010). Elicitator: an expert elicitation tool for regression in
ecology. Environmental Modelling & Software 25(1), 129–145.

Jugulum, R., S. Taguchi, et al. (2004). Computer-based Robust Engineering: Essentials for DFSS. ASQ
Quality Press: Milwaukee, Wisconsin.

Kacker, R. N., E. S. Lagergren, and J. J. Filliben (1991). Taguchi’s Orthogonal Arrays Are Classical Designs
of Experiments. Journal of research of the National Institute of Standards and Technology 96(5), 577–591.

Korb, K. B. and A. E. Nicholson (2010). Bayesian artificial intelligence. CRC press: London, UK.

Low Choy, S., A. James, J. Murray, and K. Mengersen (2012). Elicitator: a user-friendly, interactive tool
to support scenario-based elicitation of expert knowledge. In Expert Knowledge and Its Application in
Landscape Ecology, Chapter 3, pp. 39–67. Springer: New York.

Low Choy, S., J. Murray, A. James, and K. L. Mengersen (2010). Indirect elicitation from ecological experts:
from methods and software to habitat modelling and rock-wallabies. The Oxford Handbook Of Applied
Bayesian Analysis, 511–544.

Low Choy, S., R. O’Leary, and K. Mengersen (2009). Elicitation by design in ecology: using expert opinion
to inform priors for Bayesian statistical models. Ecology 90(1), 265–277.

Marcot, B. G., J. D. Steventon, G. D. Sutherland, and R. K. McCann (2006). Guidelines for developing and
updating Bayesian belief networks applied to ecological modeling and conservation. Canadian Journal of
Forest Research 36(12), 3063–3074.

Pike, W. A. (2004). Modeling drinking water quality violations with Bayesian Networks. American Water
Resources Association 40(6), 1563 – 1578.

Reiss, H., S. Cunze, K. König, H. Neumann, and I. Kröncke (2011). Species distribution modelling of marine
benthos: a north sea case study. Marine Ecology Progress Series 442, 71–86.

Speirs-Bridge, A., F. Fidler, M. McBride, L. Flander, G. Cumming, and M. Burgman (2010). Reducing
overconfidence in the interval judgments of experts. Risk Analysis 30(3), 512–523.

Taguchi, G. and S. Konishi (1987). Taguchi Methods: Orthogonal Arrays and Linear Graphs-Tools for Quality
Engineering. American Supplier Institute: Dearborn, Mich.

Alkhairy and Low-Choy, Designing elicitation of expert knowledge into conditional probability tables in Bayesian networks

REFERENCES

Antony, J. (2003). Design of experiments for engineers and scientists. Elsevier: Oxford.

Box, G. E., J. S. Hunter, and W. G. Hunter (2005). Statistics for experimenters: design, innovation, and

discovery. John Wiley & Sons, Inc.: Hoboken, New Jersey.

Cain, J. (2001). Planning improvements in natural resources management. Centre for Ecology and Hydrology,
Wallingford, UK 124, 1–123.

Chen, S. H. and C. A. Pollino (2012). Good practice in Bayesian network modelling. Environmental Modelling

& Software 37, 134–145.

Elith, J. and J. R. Leathwick (2009). Species distribution models: ecological explanation and prediction across
space and time. Annual review of ecology, evolution, and systematics 40, 677–697.

Ellison, A. M. (1996). An introduction to Bayesian inference for ecological research and environmental
decision-making. Ecological applications 6, 1036–1046.

Fisher, R. A. (1960). The design of experiments. Oliver and Boyd: Edinburgh; London.
Gelman, A., Y.-S. Su, M. Yajima, J. Hill, M. G. Pittau, J. Kerman, T. Zheng, V. Dorie, and M. Y.-S. Su (2016).

Package arm. Available from: https://CRAN.R-project.org/package=arm.
Grigore, B., J. Peters, C. Hyde, and K. Stein (2013). Methods to elicit probability distributions from experts:

1075




