
Downscaling SMAP and SMOS soil moisture retrievals 

over the Goulburn River Catchment, Australia 

I.P. Senanayake a, I.Y. Yeo a, N. Tangdamrongsub a, G.R. Willgoose a, G.R. Hancock b, T. Wells a,           

B. Fangc and V. Lakshmic 

a School of Engineering, Faculty of Engineering and Built Environment, The University of Newcastle, 

Callaghan, NSW 2308, Australia. 
b School of Environmental and Life Sciences, Faculty of Science, The University of Newcastle, Callaghan,       

NSW 2308, Australia. 
c School of Earth Ocean and Environment, University of South Carolina, Columbia,                                     

SC 29223, United States. 
Email: Indishe.Senanayake@uon.edu.au 

Abstract:     Soil moisture is an important variable in a number of environmental processes – specifically the 

hydrological cycle, in the water-limited environments. Therefore, soil moisture data is important as an input 

variable in hydrologic, climatic modelling and agricultural applications. Many of these applications require 

high-resolution soil moisture data. However, most of the available soil moisture measurements are rarely 

available at high resolution, therefore unable to capture the spatial heterogeneity of soil moisture with required 

accuracy levels. Thus, upscaling or downscaling of soil moisture observations to higher spatial resolution is an 

essential requirement for these multidisciplinary applications. A long-term high-resolution soil moisture 

dataset is useful for planning and decision making in agriculture, climatology and hydrology. Developing a 

historic soil moisture dataset at high spatial resolution over a long period requires the use of different satellite 

soil moisture products. However, the use of different satellite products results in incompatibilities among each 

other due to discrepancies in overpass times, the wavelengths used, retrieval algorithms, orbital parameters and 

sensor errors. Therefore, validation and comparison of soil moisture retrievals from different satellite sensors 

and their downscaled products is important in evaluating the consistency of a long-term time series dataset of 

high-resolution soil moisture.  

This study focusses on a downscaling algorithm based on the thermal inertia theory at two sub-catchments of 

the Goulburn River in south-eastern Australia, Krui and Merriwa River catchments. The goal is to downscale 

the radiometric soil moisture retrievals of Soil Moisture Active Passive (SMAP) and Soil Moisture and Ocean 

Salinity (SMOS) missions along with validation using established in-situ observation networks.  

A linear regression model was developed between the daily surface temperature difference and daily mean soil 

moisture values from the in-situ observations of the Scaling and Assimilation of Soil Moisture and Streamflow 

(SASMAS) project. This relationship is modulated by the vegetation cover and soil attributes. The MODerate-

resolution Imaging Spectroradiometer (MODIS) derived land surface temperature difference values were fitted 

into the lookup algorithms to estimate surface soil moisture at fine spatial resolution at 1 km. The coarse-

resolution SMAP (36 km) and SMOS (25 km) radiometric soil moisture products were downscaled to 1 km.  

The coarse-resolution SMAP and SMOS soil moisture datasets were compared with each other, and then 

against the SASMAS in-situ measurements. SMAP 36 km datasets show a reasonable agreement with the in-

situ data with RMSEs of 0.07 and 0.05 cm3/cm3 over two SMAP pixels. However, SMOS 25 km soil moisture 

products show a general underestimation as compared to SMAP and SASMAS datasets. Therefore, the SMOS 

data were calibrated with SMAP data. Subsequently, the SMAP, SMOS and adjusted SMOS datasets over the 

Krui and Merriwa River catchments for the year 2015 were downscaled and compared.  

The results show that the accuracy of the downscaled soil moisture datasets are highly influenced by the 

accuracy of the coarse-resolution satellite soil moisture products. The downscaled data were compared with 

in-situ data of five SASMAS monitoring stations. The downscaled SMAP, SMOS and adjusted SMOS datasets 

respectively showed average RMSEs of 0.10 (standard deviation, σ= 0.05), 0.19 (σ= 0.07) and 0.13 (σ= 0.02) 

cm3/cm3 with the SASMAS in-situ measurements. The three downscaled datasets of SMAP, SMOS and 

adjusted SMOS show consistent soil moisture pattern over the study catchments. The downscaled adjusted 

SMOS data displayed a better agreement with downscaled SMAP soil moisture data compared to the non-

adjusted SMOS data.  
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1. INTRODUCTION 

Soil moisture is a key variable in a number of environmental processes in arid and semi-arid environments. 

Therefore, soil moisture data are required for hydrological modelling, climatic modelling and agricultural 

applications (Western et al., 2002). The spatial and temporal variability of soil moisture is determined by the 

spatial heterogeneity of the land surface that includes land use/land cover, topography, and soil texture as well 

as meteorological factors such as rainfall, wind speed, radiation and humidity (Western et al., 2002).  

The available remotely sensed soil moisture products are unable to capture the catchment and field-scale soil 

moisture variability as required by many applications due to their coarser resolutions (Fang and Lakshmi, 

2014). Therefore, it is necessary to downscale satellite soil moisture data into finer spatial resolutions. 

Developing a long-term soil moisture dataset often requires soil moisture products from more than one satellite. 

However, different satellite soil moisture products show inconsistencies due to the disparities in spatial 

resolution, wavelength, retrieval algorithms, overpass times and penetration depths. Therefore, validation of 

satellite soil moisture retrievals and their downscaled products are important in order to maintain the 

consistency of a long-term high-resolution dataset of soil moisture.   

The main objectives of this study is to use the thermal inertia relationship between diurnal soil temperature 

difference (ΔT) and the daily mean soil moisture (θμ) to downscale the SMAP and SMOS L-band radiometric 

soil moisture retrievals over the Krui and Merriwa River catchments, two sub-catchments of the Goulburn 

River, in the Upper Hunter region of New South Wales, Australia and to compare and validate the downscaled 

soil moisture products of SMAP and SMOS. The results of this study will provide insights in developing a 

long-term time series of high-resolution soil moisture data during the period of SMOS and SMAP data 

availability.  

2. THEORY AND BACKGROUND OF THE RESEARCH 

The downscaling theory presented here is based on the thermal inertia relationship between ΔT and θμ. ΔT can 

be expressed as TPM -TAM, where TPM and TAM are soil surface temperatures in the afternoon and the morning 

respectively. Thermal inertia (D) is a property that characterizes the degree of resistance of a body to the change 

of its surrounding temperature. The diurnal temperature difference of the soil (ΔTs) is inversely proportional to 

the diurnal thermal inertia of the soil (Ds) (Eq. 1) (Engman, 1991).  

ΔTs = f (
1

Ds
)                                                               (1) 

Thermal inertia is a function of material’s density (ρ), thermal conductivity (K) and specific heat capacity (c) 

(Price, 1977). 

D =√ρ.K.c                                                                                                                                                   (2) 

The thermal inertia of water is higher than of the dry soils, hence wet soil exhibits lower ΔTs change compared 

to the dry soils. Therefore, when the soil moisture content is increasing, Ds of soil increases proportionally. 

This phenomenon is used in this study to develop regression relationships between the ΔT and θμ, which is 

consequently used to estimate θμ for a given ΔT.  

Fang and Lakshmi (2014) and Fang et al. (2013) have employed this concept to downscale AMSR-E and 

SMOS soil moisture products over the Little Washita watershed in Oklahoma, United States by developing 

monthly ΔT-θμ relationships modulated by the vegetation density by using the North American Land Data 

Assimilation System (NLDAS) datasets. Senanayake et al. (2017) has tested this methodology to downscale 

SMAP radiometric soil moisture products over the Krui and Merriwa River catchments in NSW, Australia. In 

that study, the hourly in-situ soil moisture and temperature data acquired in the year 2015 from the SASMAS 

project has been used to develop the regression model. The data from the 0-30 cm soil profile was employed 

in that work due to the limited availability of the SASMAS in-situ data at 0-5 cm soil profile in the year 2015. 

However, SMAP and SMOS satellites observe soil moisture at approximately the top 5 cm of soil. This 

mismatch between the soil profiles observed in satellite and in-situ measurements caused uncertainties in the 

results. The soil clay content has also been included as a modulating factor in that study by considering the 

effect of soil texture to the ΔT-θμ relationship (Engman, 1991). 

The work presented here is an extension of Senanayake et al. (2017) by employing the SASMAS soil moisture 

and soil temperature data of the entire time period of data availability, i.e. from 2003 to 2015, to develop the 
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regression model. This facilitates the use of datasets at 0-5 cm soil profile, which is more compatible with the 

L-band satellite soil moisture retrievals. Furthermore, the use of a long-term dataset generalizes the regression 

model across the temporal domain and captures a higher range of seasonal and vegetation conditions.  

3. GOULBURN RIVER CATCHMENT AND THE SAMAS IN-SITU DATASET 

The study area, Goulburn River catchment, is located in New South Wales, Australia about 200 km northwest 

to Newcastle city extending from 310 46’S to 320 51’S and from 1490 40’E to 1500 36’E. The Goulburn River 

flows generally from west to east with its tributaries flow from north to south. The catchment encompasses a 

temperate and semi-arid climate. Monthly mean maximum temperature of the catchment reaches 300 C in the 

summer and 140 C in the winter, while monthly mean minimum temperatures in the summer and winter reaches 

160 C and 20 C respectively. The elevation of the catchment varies from approximately 100 m in the lower 

reaches to 1300 m in the northern and southern mountain ranges. The annual average precipitation is 

approximately 700 mm, but varies across the catchment from 500 mm to 1100 mm. The Goulburn River 

catchment can be divided into two distinct parts based on its geology, topography and land cover. The northern 

half of the catchment is mainly cleared for cropping and grazing while the southern half is covered by dense 

vegetation including a national park. The geology of the northern part consists of basalt-derived soils while the 

southern part consists of sandstones, conglomerate and shale (Rüdiger et al., 2007).  

The two focus sub-

catchments of this 

study, Krui and 

Merriwa River, are 

located in the 

northern part of the 

Goulburn River 

catchment. Krui and 

Merriwa River 

catchments have 

areas of 562 km2 and 

651 km2 respectively 

and have a common 

catchment divide in 

the north-south 

direction in their 

northern reaches.  

Twenty-six soil 

moisture monitoring 

stations have been 

established over the 

Goulburn River 

catchment under the 

SASMAS project in 

2003 (Figure 1) (Rüdiger et al., 2007). The soil moisture is measured at soil depths of 0-30 cm, 30-60 cm and 

60-90 cm by using Campbell Scientific CS616 water content reflectometers. Campbell Scientific T107 

temperature sensors were installed vertically to measure the soil temperature of 0-30 cm soil profile. Stevens 

Water HydraProbes were installed at a later stage of the project to measure soil moisture and temperature at 0-

5 cm soil profile, which is more compatible with the L-band satellite soil moisture retrievals. Soil moisture and 

temperature are measured at each minute and logged at every 20-minute interval. Six monitoring stations have 

been established at the Krui River catchment and seven at Merriwa River catchment. A densely monitored 

Stanley micro-catchment is located in the southern half of the Krui River catchment with seven monitoring 

stations (Rüdiger et al., 2007). 

Figure 1. The Study area, Goulburn River catchment and SASMAS soil 

moisture monitoring stations. The SMAP 36 km pixels are numbered 

from P-1 to P-20. 
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4. METHODOLOGY 

4.1. Comparison and validating of SMAP and SMOS soil moisture products 

The accuracy of the downscaled soil moisture products are highly dependent on the reliability of the coarse-

resolution satellite soil moisture products. A comparison among satellite soil moisture retrievals from different 

sensors and platforms is a requirement in developing a consistent time series of high-resolution soil moisture 

dataset. Therefore, SMAP Level 3 passive (36 km) and SMOS Level 3 passive (25 km) soil moisture datasets 

were compared across the Krui and Merriwa River catchments in 2015. The weighted average of SMOS data 

over four SMAP pixels, P-6, 7, 10 and 11 (Figure 1), were used in this comparison. The SMAP and SMOS 

datasets were obtained from the National Snow and Ice Data Center (NSIDC) and the Centre Aval de 

Traitement des Données SMOS (CATDS) respectively. The daily mean of SMOS ascending and descending 

data was used in this work as the SMOS derived θμ. Furthermore, the SMAP and SMOS data across Krui and 

Merriwa River catchments were compared with the SASMAS in-situ measurements of 0-5 cm and 0-30 cm 

soil profiles based on the data availability.  

The SMOS soil moisture dataset was linearly calibrated with the SMAP data across the study area, since SMOS 

soil moisture products showed a general underestimation. The calibrated SMOS data is termed 'adjusted SMOS 

data' onwards. 

4.2. Developing the regression 

model 

The thermal inertia relationship between 

ΔT and θμ is varying seasonally and 

modulated by the vegetation density and 

soil texture. Thermal conductivity of 

clay is higher than sandy soils due to the 

higher number of interparticle contacts 

in clay. This results in higher thermal 

inertia in clayey soils compared to sandy 

soils (Engman, 1991). Therefore, clay 

content was used as the soil parameter in 

this study based on its effect to the 

thermal inertia. Normalized difference 

vegetation index (NDVI) was employed 

in classifying the regression model based 

on the vegetation density. 

SASMAS hourly soil temperature and soil moisture data at 0-5 cm soil profile of the Krui River catchment 

monitoring stations from 2003 to 2015 were used in calculating ΔT and θμ values. The ΔT values were 

calculated based on the approximate MODIS-Aqua day and night overpass times, i.e. 13:30 and 01:30 hours 

local time (Eq. 3).  

ΔT = T0130 - T1330                                                                                                                                       (3) 

where T0130 and T1330 are the land surface temperature (LST) values of a particular point or pixel at 01:30 and 

13:30 hours respectively.  

A time series of 16-day NDVI estimates corresponding to the locations of Krui River catchment monitoring 

stations from 2003 to 2015 were extracted from the 1 km resolution MODIS MYD13A2 products. The 

extracted NDVI data was classified into three classes based on the vegetation density (Figure 2). The soil clay 

content at the Krui River catchment monitoring stations were obtained from SASMAS site characteristics and 

classified into two classes. In summary, the ΔT and θμ datasets were categorized into 24 classes based on the 

season, soil clay content and the NDVI. Figure 2 shows the classification of modulating factors for the spring 

season. Subsequently, linear regressions algorithms between ΔT and θμ were developed for each of these 

categories. Figure 3 demonstrates the regression fit for the spring season with clay content< 25% and        

NDVI< 0.3. 

NDVI<0.3 

0.3<NDVI<0.6 

NDVI>0.6 

NDVI<0.3 

0.3<NDVI<0.6 

NDVI>0.6 

Soil clay content<25% 

Soil clay content>25% 

Season: Spring 

Figure 2. The regression model developed for the spring 

season including soil clay content and NDVI as 

modulating factors. 
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4.3. Estimating soil moisture at high resolution based on the thermal inertia relationship 

The night-time and day-time 1km LST data across the Krui and Merriwa River 

catchments over the year 2015 were extracted from the MODIS MYD11A1 

products. The LST data were bias corrected by calibrating with the SASMAS 

in-situ soil temperature data. Afterwards, the ΔT values were calculated by 

computing the difference between the adjusted day-time and night-time LST 

values of each 1 km MODIS pixel (Eq. 3). The corresponding NDVI and soil 

clay content values for these ΔT values over the Krui and Merriwa River 

catchments in 2015 were extracted from MYD13A2 dataset and National Soil 

and Landscape Grid dataset (3” resolution) respectively. The ΔT values were 

then classified as per the regression model based on the season, clay content 

and NDVI classes. Thereafter, the θμ values were estimated by fitting the 

classified ΔT values into their respective look up curves according to the 

regression model (Figure 2).  

4.4. Downscaling SMAP and SMOS passive soil moisture retrievals 

The estimated θμ values were applied to a scaling equation (Eq. 4) to downscale SMAP, SMOS and adjusted 

SMOS datasets (modified from Fang and Lakshmi, 2014; Fang et al., 2013).  

θds(p) = θest(p) + [θsat - 
1

N
 ∑ θest (pi

)]N
i=1                                                                                        (4)   

where θds(p) is the downscaled soil moisture at the 1 km pixel p, θest(p) is the soil moisture of the 1 km pixel p 

estimated through the regression model,  θsat is the soil moisture of the respective coarse-resolution satellite 

soil moisture product (for SMAP, θsat is the soil moisture of the respective 36 km SMAP pixel; for SMOS and 

adjusted SMOS, θsat is the average of ascending and descending soil moisture values of the respective 25 km 

SMOS pixel), N is the number of 1 km pi pixels within the respective coarse-resolution satellite pixel. 

4.5. Verification and comparison of datasets   

The validation of the downscaled datasets was carried out by using the SASMAS in-situ measurements. The 

only Krui and Merriwa River catchment monitoring stations where soil moisture and temperature data were 

available at 0-5 cm soil profile in 2015 were K3, M2 and M6. The in-situ measurements of these three stations 

were used along with the data from S-1 and S-3 stations of the Stanley micro-catchment for the validation 

process.  

5. RESULTS  

5.1. Validation and 

comparison of satellite soil 

moisture products 

The validation of SMAP soil 

moisture data was carried out by 

using the SASMAS in-situ 

measurements acquired in 2015. 

Two SMAP pixels, P-7 and P-11, 

were used for the validation 

process based on the data 

availability and distribution of 

the monitoring stations over the 

SMAP pixels. The RMSE values 

of the SMAP P-7 at 0-5 cm and 

0-30 cm soil profiles are 0.070 

and 0.074 cm3/cm3 respectively. 

At P-11, the SMAP’s RMSE 

value of 0–30 cm soil profile is 

Figure 4. Comparison between (a) SMAP 36 km and SASMAS in-situ 

dataset, (b) SMAP-36 km and SMOS-25 km passive soil moisture 

products, over the Krui and Merriwa River catchments in 2015. 

Figure 3. Linear 

regression fit developed 

for the spring season with 

soil clay content< 0.25 and   

NDVI< 0.3. 
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0.055 cm3/cm3 (Figure 4a).  Comparing with SMAP, SMOS shows higher RMSE values with SASMAS in-

situ measurements at 0-30 cm soil profile, 0.15, 0.18 and 0.19 cm3/cm3, over three SMOS pixels.  

Thereafter, a cross-comparison was carried out between SMAP and SMOS radiometric soil moisture products. 

Four SMAP 36 km pixels, P-06, P-07, P-10 and P-11, are distributed over the Krui and Merriwa River 

catchments (Figure 1). These four pixels are distributed over twelve SMOS 25 km pixels. The SMAP and 

SMOS soil moisture products were compared over the extent of these four SMAP pixels by using the weighted 

average of the SMOS data. The comparison between SMAP and SMOS passive soil moisture products across 

the SMAP pixels P-6, P-7, P-10 and P-11 showed RMSEs of 0.105, 0.148, 0.054, 0.044 cm3/cm3 and R2 of 

0.63, 0.53, 0.83, 0.75 respectively (Figure 4b). The combined dataset over the four SMAP pixels shows a 

RMSE of 0.098 cm3/cm3 between SMAP and SMOS data. This has 

been improved up to 0.059 cm3/cm3 after calibrating SMOS soil 

moisture retrievals using SMAP data. 

5.2. Validation of downscaled soil moisture products 

The in-situ data of SASMAS stations K-3, M-2, M-6, S-1 and S-3 were 

used in validating the downscaled soil moisture datasets. The 

SASMAS in-situ measurements show average RMSEs of 0.10 (σ= 

0.05), 0.19 (σ= 0.07) and 0.13 (σ= 0.02) cm3/cm3 with the downscaled 

SMAP, SMOS and adjusted SMOS datasets respectively. The 1 km 

soil moisture data estimated from the ΔT-θμ regressions show a 

RMSE of 0.13 (σ= 0.09) cm3/cm3 with the in-situ measurements. 

Figure 5 demonstrates the comparison between downscaled SMAP 

data and downscaled Adjusted SMOS datasets with SASMAS in-situ 

measurements at the S-3 monitoring station. 

6. DISCUSSION AND CONCLUSIONS 

A number of algorithms have been used to downscale different satellite soil moisture products over the past 

couple of decades. Some recently tested SMAP downscaling methods include Bayesian Merging Method (Wu 

et al., 2017b), methods based on vegetation index and surface temperature (Knipper et al., 2016; Lakshmi and 

Li, 2016) and a near-infrared (NIR) - Red spectra based method (Chen et al., 2016). Wu et al. (2017a) has 

compared three active-passive downscaling algorithms, namely baseline algorithm, optional downscaling 

algorithm and a change detection method, to downscale SMAP soil moisture data into 9 km resolution. 

SMOS soil moisture products show an underestimation of soil moisture with respect to both SMAP retrievals 

and SASMAS in-situ measurements. This observation is in agreement with several studies showing a general 

underestimation of SMOS soil moisture retrievals (Niclòs et al., 2016).  

The downscaled SMAP soil moisture shows a better overall accuracy when compared to the downscaled SMOS 

soil moisture and adjusted SMOS soil moisture over the validation sites. Therefore, it is evident that the 

accuracy of the downscaled soil moisture products is highly dependent on the accuracy of the coarse-resolution 

Figure 5. Comparison between 

SASMAS in-situ data with the 

downscaled SMAP and adjusted 

SMOS soil moisture data at S-3. 

Figure 6. Spatial variability of soil moisture capture by (a) SMAP 36 km passive, (b) SMOS 25 km 

passive, (c) downscaled SMAP (1 km), (d) downscaled SMOS (1 km) and (e) downscaled adjusted 

SMOS (1 km) data over the Krui and Merriwa River catchments on 28th June 2015. 
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satellite soil moisture products employed in the downscaling process. The downscaled adjusted SMOS dataset 

shows a better agreement with in-situ data compared to the downscaled non-adjusted SMOS dataset. Thus, a 

validation and comparison of SMAP and SMOS coarse-scale satellite products over a larger extent are required 

prior to expanding the downscaling method into a larger area. 

The unavailability of densely distributed in-situ soil moisture observations at 0-5 cm soil depth in 2015 across 

the study area was a limitation to evaluate the spatial heterogeneity captured by the downscaled soil moisture 

datasets. The error of the downscaled data is slightly higher than the coarse-resolution soil moisture products 

when compared with the available in-situ measurements. The unavailability of evenly distributed multiple 

monitoring stations within 1 km pixels and the increased noise at finer resolution can be identified as the major 

reasons for this.  

The spatial variability has been capture by the downscaled data in more detail compared to the coarse-resolution 

satellite soil moisture products (Figure 6). Although the underestimation of SMOS downscaled product is 

evident, Figure 6 shows that the spatial pattern of soil moisture is consistent between the downscaled SMAP 

and SMOS datasets over the study area. The validation work will be further extended into other soil moisture 

monitoring fields in the south-eastern Australia in the future by employing improved regression algorithms.  
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