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Abstract:  Recent research shows that efforts to limit climate change should focus on reducing emissions of 
carbon dioxide over other greenhouse gases or air pollutants. Many countries are paying substantial attention 
to carbon emissions to improve air quality and public health. The largest source of carbon emissions from 
human activities in some countries in Europe and elsewhere is from burning fossil fuels for electricity, heat, 
and transportation. The prices of fuel and carbon emissions can influence each other. Owing to the importance 
of carbon emissions and their connection to fossil fuels, and the possibility of Granger (1980) causality in spot 
and futures prices, returns and volatility of carbon emissions, crude oil and coal have recently become very 
important research topics. For the USA, daily spot and futures prices are available for crude oil and coal, but 
there are no daily futures prices for carbon emissions. For the EU, there are no daily spot prices for coal or 
carbon emissions, but there are daily futures prices for crude oil, coal and carbon emissions. For this reason, 
daily prices will be used to analyse Granger causality and volatility spillovers in spot and futures prices of 
carbon emissions, crude oil, and coal. As the estimators are based on QMLE under the incorrect assumption of 
a normal distribution, we modify the likelihood ratio (LR) test to a quasi-likelihood ratio test (QLR) to test the 
multivariate conditional volatility Diagonal BEKK model, which estimates and tests volatility spillovers, and 
has valid regularity conditions and asymptotic properties, against the alternative Full BEKK model, which also 
estimates volatility spillovers, but has valid regularity conditions and asymptotic properties only under the null 
hypothesis of zero off-diagonal elements. Dynamic hedging strategies using optimal hedge ratios are suggested 
to analyse market fluctuations in the spot and futures returns and volatility of carbon emissions, crude oil and 
coal prices. 

Keywords:   Carbon emissions, fossil fuels, low carbon targets and green energy, Spot and futures prices, 
Granger causality and volatility spillovers, Quasi likelihood ratio (QLR) test of Diagonal and 
Full BEKK 
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1. INTRODUCTION 

Recent research shows that efforts to limit climate change should focus on reducing emissions of carbon 
dioxide over other greenhouse gases or air pollutants. Many countries are paying substantially greater attention 
to carbon emissions to improve air quality and public health. Carbon emissions trading programs have been 
established at the international, regional, national, and sub-national levels.  

In a scenario of ‘no carbon dioxide mitigation’, global temperatures would be predicted to rise by over five 
degrees Celsius by 2100, but cutting emissions of methane, HFCs and black carbon would reduce this rise to 
around one degree Celsius. The results suggest that carbon dioxide should certainly remain central to 
greenhouse gas emission cuts. 

The largest source of carbon emissions from human activities in some countries in Europe and elsewhere is 
from burning fossil fuels for electricity, heat, and transportation. The price of fuel influences carbon emissions, 
but the price of carbon emissions can also influence the price of fuel. Owing to the importance of carbon 
emissions and their connection to fossil fuels, and the possibility of Granger (1980) causality in spot and futures 
prices, returns and volatility of carbon emissions, it is not surprising that crude oil and coal have recently 
become a very important public policy issue, and hence also a significant research topic. 

2. DATA 

The length of the sample period for the empirical analysis was dictated by the availability of data on carbon, 
coal and crude oil spot and futures prices in the EU and USA. The carbon emission trading market of the EU 
has the longest trading period for futures prices, but not for spot prices. The USA is the leader in developing a 
wide range of financial derivatives, such as futures prices, for financial, energy and commodities, but not for 
carbon emissions, where only spot prices are available. 

Data for EU carbon emission, crude oil and coal futures are available from 1 April 2008 to 20 May 2017, and 
these will be analyzed in the paper. Coal spot price in the EU is available on a weekly basis. The spot prices of 
carbon emission and crude oil have a high correlation with the corresponding futures prices. The volume of 
trades in the spot market of carbon emissions is much smaller than in the futures market.  

Data for crude oil are available prior to 2000. However, the data for the spot prices of coal and carbon emission 
start from 2006/7/17 and 2008/4/1, respectively. Therefore, the data in the empirical analysis for the European 
Union starts from the latest date for crude oil, coal and carbon emissions, namely 2008/4/1. 

Data for carbon, coal and oil spot prices from 2016/1/5 to 2017/5/20 for the USA will also be analyzed in the 
paper, but data for futures prices of carbon emission are not available for the USA. Spot prices for coal and 
crude oil start prior to 2000. However, data for carbon emission start from 2016/1/5. Consequently, the spot 
price data in the empirical analysis for the USA starts from the latest date for oil, coal and carbon emissions, 
namely 2016/1/5.   

For the USA, daily spot and futures prices are available for crude oil and coal, but there are no daily spot or 
futures prices for carbon emissions. For the EU, there are no daily spot prices for coal or carbon emissions, but 
there are daily futures prices for crude oil, coal and carbon emissions. For this reason, daily futures prices will 
be used to analyse Granger causality and volatility spillovers in spot and futures prices of carbon emissions, 
crude oil, and coal. This will be based on the Lagrange multiplier test of univariate causality in variance 
(strictly, causality in conditional volatility) of Hafner and Herwartz (2006), and more recently, Chang and 
McAleer (2017). An extension to multivariate tests of causality in conditional volatility will be a focus of the 
paper.  

As the estimators are based on QMLE under the incorrect assumption of a normal likelihood function, we will 
modify the likelihood ratio (LR) test to a quasi-likelihood ratio test (QLR). A novel QLR test is given below 
to test the multivariate conditional volatility Diagonal BEKK model, which is used to estimate and test 
spillovers, and which has valid regularity conditions and asymptotic properties, against the alternative Full 
BEKK model, which is used to estimate spillovers, but has valid regularity conditions and asymptotic 
properties only under the null hypothesis of zero off-diagonal elements. Dynamic hedging strategies using 
optimal hedge ratios will be suggested to analyse market fluctuations in the spot and futures returns and 
volatility of carbon emissions, crude oil and coal prices. 

QLR test statistic: 2 (quasi maximized log likelihood value under the alternative hypothesis – quasi 
maximized log likelihood value under the null hypothesis). 
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The QLR statistic has an asymptotic chi-squared distribution under the null hypothesis, with degrees of 
freedom (df) equivalent to the number of off-diagonal terms in the two m x m matrices, the weighting matrix, 
A and the stability matrix, B, of the Full BEKK model, namely 2m(m-1). 

3. METHODOLOGY 

Although financial returns are almost certainly stationary, the empirical analysis will commence with tests of 
unit roots based on ADF, DF-GLS and KPSS. This will be followed by an analysis and estimation of univariate 
GARCH and multivariate diagonal BEKK models (see Baba et al. (1985), Engle and Kroner (1995)), from 
which the conditional covariances will be used for testing co-volatility spillovers, that is, Granger causality in 
conditional volatility. 

The analysis of univariate and multivariate conditional volatility models below is a summary of what has been 
presented in the literature, although a comprehensive discussion of the Full and Diagonal BEKK models is not 
available in any published source. In particular, application of the quasi likelihood ratio (QLR) test of the 
Diagonal BEKK model as the null hypothesis against the alternative hypothesis of a Full BEKK model does 
not seem to have been considered in the literature.  

The first step in estimating multivariate models is to obtain the standardized residuals from the conditional 
mean returns shocks. For this reason, the most widely-used univariate conditional volatility model, namely 
GARCH, will be presented briefly, followed by the two most widely estimated multivariate conditional 
covariance models, namely the Diagonal and Full BEKK models. 

3.1  Univariate Conditional Volatility 

Consider the conditional mean of financial returns, as follows: ݕ௧ = (௧ିଵܫ|௧ݕ)ܧ +  ௧,         (1)ߝ

where the financial returns,	ݕ௧ = Δ݈݃݋ ௧ܲ, represent the log-difference in financial commodity or agricultural 
prices, ௧ܲ,	ܫ௧ିଵ is the information set at time t-1, and ߝ௧ is a conditionally heteroskedastic error term, or returns 
shock. In order to derive conditional volatility specifications, it is necessary to specify the stochastic processes 
underlying the returns shocks, ߝ௧.  
The most popular univariate conditional volatility model, GARCH model, is discussed below. Consider the 
random coefficient AR(1) process underlying the return shocks, ߝ௧: 

௧ߝ     = ߶௧ߝ௧ିଵ +  ௧     (2)ߟ

where ߶௧~݅݅݀(0, ,௧~݅݅݀(0ߟ ,0 ≤	ߙ ,(ߙ ௧ߟ ,0 ≤	߱ ,(߱ =  .௧/ඥℎ௧ is the standardized residual, with ℎ௧ defined belowߝ

Tsay (1987) derived the ARCH (1) model of Engle (1982) from equation (2) as: ℎ௧ ≡ (௧ିଵܫ|௧ଶߝ)ܧ = ௧ିଵଶߝߙ +	߱     (3) 

where ℎ௧  represents conditional volatility, and ܫ௧ିଵ  is the information set available at time t-1. A lagged 
dependent variable, ℎ௧ିଵ, is typically added to equation (3) to improve the sample fit: ℎ௧ ≡ (௧ିଵܫ|௧ଶߝ)ܧ = ௧ିଵଶߝߙ	+ ߱ +  ℎ௧ିଵ.    (4)ߚ

From the specification of equation (2), it is clear that both ߱  and ߙ  should be positive as they are the 
unconditional variances of two different stochastic processes. Given the non-normality of the returns shocks, 
the Quasi-Maximum Likelihood Estimators (QMLE) of the parameters have been shown to be consistent and 
asymptotically normal in several papers.  

3.2  Multivariate Conditional Volatility 

The multivariate extension of the univariate ARCH and GARCH models is given in Baba et al. (1985) and 
Engle and Kroner (1995). In order to establish volatility spillovers in a multivariate framework, it is useful to 
define the multivariate extension of the relationship between the returns shocks and the standardized residuals, 
that is, ߟ௧ = ௧ݕ ௧/ඥℎ௧. The multivariate extension of equation (1), namelyߝ = (௧ିଵܫ|௧ݕ)ܧ +  ௧, can remainߝ
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unchanged by assuming that the three components are now ݉ × 1 vectors, where ݉ is the number of financial 
assets. The multivariate definition of the relationship between ߝ௧ and ߟ௧ is given as:  

௧ߝ      =  ௧,     (5)ߟ௧ଵ/ଶܦ

where ܦ௧ = ݀݅ܽ݃(ℎଵ௧, ℎଶ௧, … , ℎ௠௧) is a diagonal matrix comprising the univariate conditional volatilities. 

Define the conditional covariance matrix of ߝ௧	as ܳ௧. As the ݉ × 1 vector, ߟ௧, is assumed to be iid for all ݉ 
elements, the conditional correlation matrix of ߝ௧, which is equivalent to the conditional correlation matrix of ߟ௧, is given by ߁௧. Therefore, the conditional expectation of (5) is defined as: 

    ܳ௧ =  ௧ଵ/ଶ.      (6)ܦ௧߁௧ଵ/ଶܦ

Equivalently, the conditional correlation matrix, ߁௧, can be defined as: 

௧߁     ௧ିܦ = ଵ/ଶܳ௧ܦ௧ି ଵ/ଶ.     (7) 

Equation (6) is useful if a model of ߁௧ is available for purposes of estimating ܳ௧, whereas (7) is useful if a 
model of ܳ௧ is available for purposes of estimating ߁௧. Equation (6) is convenient for a discussion of volatility 
spillover effects, while both equations (6) and (7) are instructive for a discussion of asymptotic properties. As 
the elements of ܦ௧ are consistent and asymptotically normal, the consistency of ܳ௧ in (6) depends on consistent 
estimation of ߁௧, whereas the consistency of ߁௧ in (7) depends on consistent estimation of ܳ௧. As both ܳ௧ and ߁௧ are products of matrices, with inverses in (7), neither the QMLE of ܳ௧ nor ߁௧ will be asymptotically normal 
based on the definitions given in equations (6) and (7). 

3.3  Diagonal BEKK 

The Diagonal BEKK model can be derived from a vector random coefficient autoregressive process of order 
one, which is the multivariate extension of the univariate process given in equation (2):   

௧ߝ     = ௧ିଵߝ௧ߔ +  ௧,     (8)ߟ

where ߝ௧ and ߟ௧	are ݉ × 1 vectors,  ߔ௧ is an ݉ ×݉ matrix of random coefficients,   ߔ௧~݅݅݀(0, ,௧~݅݅݀(0ߟ  ,A is positive definite ,(ܣ ݉ C is an ,(ܥ ×݉ matrix. 

Vectorization of a full matrix A to vec A can have dimension as high as ݉ଶ ×݉ଶ, whereas vectorization of a 
symmetric matrix A to vech A can have a smaller dimension of ݉(݉ + 1)/2 × ݉(݉ + 1)/2. In a case where 
A is a diagonal matrix, with ܽ௜௜ > 0 for all i = 1,…,m and | ௝ܾ௝| < 1 for all j = 1,…,m, so that A has dimension ݉ ×݉, McAleer et al. (2008) showed that the multivariate extension of GARCH(1,1) from equation (8) is 
given as the Diagonal BEKK model, namely:  ܳ௧ = ᇱܥܥ + ௧ିଵᇱߝ௧ିଵߝܣ ᇱܣ +  ᇱ,   (9)ܤ௧ିଵܳܤ

where A and B are both diagonal matrices, though the last term in equation (9) need not come from an 
underlying stochastic process. The diagonality of the positive definite matrix A is essential for matrix 
multiplication as ߝ௧ିଵߝ௧ିଵᇱ  is an ݉ ×݉ matrix; otherwise equation (9) could not be derived from the vector 
random coefficient autoregressive process in equation (8). 

3.4 Full, Triangular and Hadamard BEKK 

The full BEKK model in Baba et al. (1985) and Engle and Kroner (1995), who do not derive the model from 
an underlying stochastic process, is presented as: 

    ܳ௧ = ᇱܥܥ + ௧ିଵᇱߝ௧ିଵߝܣ ᇱܣ +  ᇱ,             (10)ܤ௧ିଵܳܤ

except that A and (possibly) B in equation (10) are now both full matrices, rather than the diagonal matrices 
that were derived in equation (9) using the stochastic process in equation (8). The full BEKK model can be 
replaced by the triangular or Hadamard (element-by-element multiplication) BEKK models, with similar 
problems of identification and (lack of) existence.  

A fundamental technical problem is that the full, triangular and Hadamard BEKK models cannot be derived 
from any known underlying stochastic processes, which means there are no regularity conditions (except by 
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assumption) for checking the internal consistency of the alternative models, and consequently no valid 
asymptotic properties of the QMLE of the associated parameters (except by assumption).  

Moreover, as the number of parameters in a full BEKK model can be as much as 3m(m+1)/2, the “curse of 
dimensionality” will be likely to arise, which means that convergence of the estimation algorithm can become 
problematic and less reliable when there is a large number of parameters to be estimated.  

3.5  Granger Causality, Volatility Spillovers, and Optimal Hedge Ratios 

McAleer et al. (2008) showed that the QMLE of the parameters of the Diagonal BEKK model were consistent 
and asymptotically normal, so that standard statistical inference on testing hypotheses is valid. Moreover, as ܳ௧ in (9) can be estimated consistently, ߁௧ in equation (7) can also be estimated consistently. 

The Diagonal BEKK model is given as equation (9), where the matrices A and B are given as: 

ܣ = ൥ܽଵଵ ⋯ 0⋮ ⋱ ⋮0 ⋯ ܽ௠௠൩，	ܤ = ൥ܾଵଵ ⋯ 0⋮ ⋱ ⋮0 ⋯ ܾ௠௠൩     (11) 

The Diagonal BEKK model permits a test of Co-volatility Spillover effects, which is the effect of a shock in 
commodity j at t-1 on the subsequent co-volatility between j and another commodity at t. Given the Diagonal 
BEKK model, as expressed in equations (9) and (10), the subsequent co-volatility must only be between 
commodities j and i at time t.  

Chang et al. (2015) define Full and Partial Volatility and Covolatility Spillovers in the context of Diagonal and 
Full BEKK models. Volatility spillovers are defined as the delayed effect of a returns shock in one asset on the 

subsequent volatility or covolatility in another asset. Therefore, a model relating tQ
 
to returns shocks is 

essential, and this will be addressed in the following sub-section. Spillovers can be defined in terms of full 
volatility spillovers and full covolatility spillovers, as well as partial covolatility spillovers, as follows, for 

mkji ,...,1,, = : 

 

(1) Full volatility spillovers: 1/ −∂∂ ktiitQ ε , ik ≠ ;      (12)  

(2) Full covolatility spillovers: 1/ −∂∂ ktijtQ ε , jikji ,, ≠≠ ;    (13) 

(3) Partial covolatility spillovers: 1/ −∂∂ ktijtQ ε , jorieitherkji =≠ , .   (14) 

Full volatility spillovers occur when the returns shock from financial asset k affects the volatility of a different 
financial asset i.  

Full covolatility spillovers occur when the returns shock from financial asset k affects the covolatility between 
two different financial assets, i and j.   

Partial covolatility spillovers occur when the returns shock from financial asset k affects the covolatility 
between two financial assets, i and j, one of which can be asset k.  

When 2=m , only spillovers (1) and (3) are possible as full covolatility spillovers depend on the existence of 
a third financial asset.  

This leads to the definition of a Co-volatility Spillover Effect as: డு೔ೕ,೟డఌೕ,೟షభ = 	ܽ௜௜ × ௝ܽ௝ ×  .௜,௧ିଵ, i≠jߝ

As ܽ௜௜ > 0	for	all	݅, 	a	test of the co-volatility spillover effect is given as a test of the null hypothesis:  ܪ଴: ܽ௜௜ ௝ܽ௝	= 0, 

which is a test of the significance of the	estimate	of	ܽ௜௜ ௝ܽ௝ in the following co-volatility spillover effect, as ߝ௜,௧ିଵ ≠ 0:  డு೔ೕ,೟డఌೕ,೟షభ = 	ܽ௜௜ ௝ܽ௝ߝ௜,௧ିଵ, i≠j. 
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If ܪ଴ is rejected against the alternative hypothesis, ܪଵ: ܽ௜௜ ௝ܽ௝	≠ 0, there is a spillover from the returns shock of 
commodity j at t-1 to the co-volatility between commodities i and j at t that depends only on the returns shock 
of commodity i at t-1. It should be emphasized that the returns shock of commodity j at t-1 does not affect the 
co-volatility spillover of commodity j on the co-volatility between commodities i and j at t. Moreover, 
spillovers can and do vary for each observation t-1, so that the empirical results average co-volatility spillovers 
will be presented, based on the average return shocks over the sample period. 

For the multivariate conditional mean returns equation: ݕ௜௧ = (௧ିଵܫ|௜௧ݕ)ܧ + ݅  , ௜௧ߝ = 1,2,⋯ ,݉,        (15) 

the bivariate random coefficient autoregressive process for ߝ௜௧	is given as: ߝ௜௧ = ௜௧ߝ௜௧ିଵ +	௝௧ߝ௝௧ିଵ +	௜௧, i≠ ݆,   (16) 

where 

௜௧~݅݅݀(0, ௜ߙ		,(௜ߙ ≥ 0, 

௝௧~݅݅݀(0,ߙ௝),		ߙ௝ ≥ 0, 
௜௧~݅݅݀(0,߱௜),		߱௜ ≥ 0	, 
௜௧ = ௜௧/ඥℎ௜௧ is the standardized residual, ℎ௜௧ is the conditional volatility obtained by setting ௝௧ߝ = 0 in bivariate equation (16): ߝ௜௧ = ௜௧ߝ௜௧ିଵ + ௜௧, ߝ)ܧ௜௧ଶ (௧ିଵܫ| ≡ ℎ௜௧ = ߱௜ + ௜௧ିଵଶߝ௜ߙ . 

Adding another commodity, as in the bivariate equation (16), gives:   ߝ௜௧ = ௜௧ߝ௜௧ିଵ + ௝௧ߝ௝௧ିଵ + ௜௧, i	 ≠ ௜௧ଶߝ)ܧ ,݆ (௧ିଵܫ| ≡ ℎ௜௧ = ߱௜ + ௜௧ିଵଶߝ௜ߙ + ௝௧ିଵଶߝ௝ߙ , 

while adding first-order lags of ℎ௜௧ and ℎ௝௧	gives: ℎ௜௧ = ߱௜ + ௜௧ିଵଶߝ௜ߙ + ௝௧ିଵଶߝ௝ߙ + ௜ℎ௜௧ିଵߚ +  ,௝ℎ௝௧ିଵߚ

where  ߙ௜ ௝ߙ ,0 ≤ ≥   .௝ ∈ (−1, 1 )ߚ ,௜∈ (−1, 1)ߚ ,0	

The null hypothesis of non-causality in volatility is given as a test of: 	ܪ଴: ߙ௝=ߚ௝=0.   

Based on the empirical results, dynamic hedging strategies using optimal hedge ratios are suggested to analyse 
market fluctuations in the spot and futures returns and volatility of carbon emissions, crude oil and coal prices.  

Using the hedge ratio:	ܴு,௧ = ܴௌ,௧ − ௧ିଵ൯ߗ൫ܴு,௧หݎܽݒ :௧ܴி,௧ and its variance, namelyߛ = ௧ିଵ൯ߗ൫ܴௌ,௧หݎܽݒ − ,൫ܴௌ,௧ݒ݋௧ܿߛ2 ܴி,௧หߗ௧ିଵ൯ +  ,௧ିଵ൯ߗ൫ܴி,௧หݎܽݒ	௧ଶߛ
the optimal hedge ratio is given as: 	ߛ௧|ߗ௧ିଵ = ,൫ܴௌ,௧ݒ݋ܿ ܴி,௧หߗ௧ିଵ൯/ݎܽݒ൫ܴி,௧หߗ௧ିଵ൯. 
4. CONCLUDING REMARKS 

The paper discussed recent research that showed efforts to limit climate change have been focusing on the 
reduction of carbon dioxide emissions over other greenhouse gases or air pollutants. Many countries have paid 
great attention to carbon emissions in order to improve air quality and public health. The largest source of 
carbon emissions from human activities in many countries in Europe and around the world has been from 
burning fossil fuels.  
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The prices of both fuel and carbon emissions can and do have simultaneous and contemporaneous effects on 
each other. Owing to the importance of carbon emissions and their interconnection to the prices, financial 
returns and associated volatilities of fossil fuels, and the possibility of Granger causality in spot and futures 
prices, returns and volatility of carbon emissions, it is not surprising that crude oil and coal, and their 
interactions with carbon emission prices, returns and volatility, have recently become very important for public 
policy and an associated research topic.  

For the USA, daily spot and futures prices are available for crude oil and coal, but there are no daily spot or 
futures prices for carbon emissions. For the EU, there are no daily spot prices for coal or carbon emissions, but 
there are daily futures prices for crude oil, coal and carbon emissions. For this reason, daily prices were used 
to analyse Granger causality and volatility spillovers in spot and futures prices of carbon emissions, crude oil, 
and coal.  

A quasi likelihood ratio (QLR) test was developed to test the multivariate conditional volatility Diagonal 
BEKK model, which has valid regularity conditions and asymptotic properties, against the alternative Full 
BEKK model, which has valid regularity conditions and asymptotic properties only under the null hypothesis 
of zero off-diagonal elements. In short, Full BEKK has no desirable mathematical or statistical properties, 
except either under the null hypothesis of zero off-diagonal elements of the weighting matrix, or simply by 
assumption. In the empirical analysis, DBEKK was rejected against the Full BEKK model for EU futures 
returns, but DBEKK was not rejected against Full BEKK for US spot returns. Therefore, further work would 
seem to be required for DBEKK in the case of EU futures returns, whereas DBEKK is empirically supported 
by the data for US spot returns. 

Dynamic hedging strategies using optimal hedge ratios were suggested to analyse market fluctuations in the 
spot and futures returns and volatility of carbon emissions, crude oil and coal prices. It was suggested that the 
futures and spot prices of carbon emissions, coal and oil should be considered contemporaneously and 
simultaneously in a portfolio that links the prices, returns and volatilities of carbon emissions to the use of 
fossil fuels. It would also be sensible to use the prices in both markets to hedge carbon emission price returns 
in the EU against both coal and oil spot price returns in the USA. 
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