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Abstract: Combat simulations can be used to compare the operational effectiveness of alternative system 
configurations in a well-defined military context via an experimental layout. However, modelling complex 
warfighting is challenging as there are many parameters in high-fidelity combat simulations that can affect 
the outcome, particularly those relating to the environment and the implementation of tactical decision 
making, and some of these can be quite uncertain. Exploring all possible parameter combinations is often 
infeasible; therefore a well-designed experiment is required to understand the impact on the performance 
rankings of alternative system configurations.   

This paper describes a case study using the COMBATXXI closed-loop simulation to estimate the 
performance sensitivity of land combat vehicle configurations within a doctrinal scenario. In total, there were 
22 configurations with different combinations of firepower, protection and other sub-system components that 
were required to be analysed. A multiple comparison procedure involving statistical tests was used to analyse 
the baseline scenario against a number of performance metrics. In order to isolate the effects of the sub-
systems, regression analysis was used.  

To improve the robustness of the baseline results, sensitivity analysis using a fractional factorial experimental 
design was applied to uncertain environmental, tactical and system parameters in the combat simulation. The 
case study results identified a subset of parameters that contribute to changes in the metrics and, in turn, the 
performance rankings of the configurations. A combination of environmental and tactical parameters was 
found to alter the performance rankings of configurations when compared to the baseline results.  

The differences in the configurations performances and the effects of the components were subjected to both 
statistical and practical significance tests. These significances are important to interpreting the insights for 
military experts. Performing sensitivity analysis and justifying the model assumptions allowed for an 
increased understanding between the model parameters and the performance rankings of the land combat 
vehicle configurations. This approach can be used to reduce uncertainty in the analysis and provide additional 
confidence for military decision makers.  
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1. INTRODUCTION 

High-fidelity combat simulations are often employed as part of a multi-method approach to compare the 
operational effectiveness of alternative combat systems or tactics described by Bowley et al. (2003). 
Modelling complex warfighting is complicated by the large number of parameters that can impact operational 
effectiveness. The stochasticity of these simulations and the presence of uncertain model parameters requires 
the sensitivity of model output metrics and the subsequent performance rankings of the alternatives systems 
to be analysed. Due to time and resource constraints of high-fidelity combat simulations; it is often 
challenging to effectively and efficiently explore all possible parameter combinations, therefore a well-
crafted experimental design plays an important role as described by Cochran and Cox (1957). Common 
experimental designs include one-factor-at-a-time (OFAT) screening by Daniel (1973), fractional factorial 
designs by Box and Hunter (1961) and Latin hypercube sampling (LHS) by McKay et al. (1979). Previous 
work conducted by Feil (1991) applied sensitivity analysis (by incorporating an experimental design) on the 
JANUS combat simulation in order to investigate how changes to battle parameters affect the measure of 
performance.  

This paper explores the use of sensitivity analysis and experimental design to analyse the differences in 
performance rankings and output metrics of alternative land combat vehicles. Sensitivity analysis provides a 
greater understanding of the impact of the uncertain combat simulation parameters and the subsequent 
robustness of the conclusions drawn. A good experimental design maximizes the parameter search space 
while minimising the overall number of replications required of the simulation. A case study using the 
Combined Arms Analysis Tool for the 21st Century (COMBATXXI) simulation developed by TRAC (2015) 
is used to highlight the methods and challenges associated with the analysis of these types of simulations. 

2. BACKGROUND 

COMBATXXI is a non-interactive, entity-level, high-fidelity combat simulation which can be used for the 
analysis of alternative systems, employment explorations or system sensitivities. The model is able to 
represent force-on-force scenarios (down to the individual soldier), system components of land combat 
vehicles (such as firepower and sensors), tactical decision making and environmental factors (such as terrain 
and light levels). In this case study, two alternative land combat vehicle options (Option A and B) were 
explored using COMBATXXI.  Different configurations of firepower, protection, sensor and other sub-
system options were considered for each option. A large set of Option A configurations and a smaller set of 
Option B configurations (see Figure 1) were chosen to test in a feasible force-on-force military scenario. For 
each of the configurations 200 replications were run in order to provide a sufficient output for the statistical 
analysis. Output metrics pertaining to lethality, vulnerability, knowledge and signature drawn from subject 
matter experts were used to measure the performance of each configuration (see Table 1).  

Table 1. Description of Metrics 

Metric Type Description 
Mission Success A Mission Success metric was used to identify if the configurations used in the scenario would achieve 

a successful mission. A Blue Mission Success is determined by subject matter experts (SMEs) and can 
change depending on the type of scenario. An example of a Mission Success could be if the Blue force 
stopped the Red force from reaching the final report line. 

Lethality Lethality metrics measure how lethal the implemented configuration is against the enemy force. 
Examples of Lethality metrics includes the number of Red vehicles catastrophically killed and the 
number of Red infantry killed. 

Vulnerability Vulnerability metrics measure how vulnerable the implemented configuration is among their friendly 
force. Examples of Vulnerability metrics include the number of Blue vehicles catastrophically killed 
and the number of Blue infantry killed. 

Knowledge Knowledge metrics measure how well the Blue Force knows about the Red Force. An example of 
Knowledge metric is the number of Red detections by Blue.  

Signature Signature metrics measures how well the Red Force knows about the Blue Force. An example of 
Signature metric is the number of Blue detections by Red. 

3. OVERVIEW OF ANALYSIS METHODS  

In this section, we split the analysis methods in two parts. The first part describes the comparison of the 
baseline results of the case study using statistical tests and regression analysis. The second part describes a 
design of experiments approach to sensitivity analysis which was used to determine the robustness of the 
baseline results.  
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3.1 Comparison of Vehicle Configurations 

The statistical tests and regression analysis used here complement each other to provide a strong 
understanding of the land combat vehicle and its sub-systems. The statistical methods test the hypothesis that 
the output metric values for each of the options are from the same distribution; this seeks to find differences 
between options. The regression analysis seeks to isolate the effects of the configuration components. 

Statistical Ranking and Visualisation   

Once a set of baseline results were obtained for all configurations, a comparison of their performance against 
each metric was made using a number of statistical tests. The configuration's statistical ranking value was 
obtained through the multiple comparison procedure based on the works of Kendall (1948) and Villacorta & 
Sáez (2015). In the first step, the Friedman (1937) omnibus non-parametric test was used to detect 
differences among groups; second, the Wilcoxon (1945) Signed Ranked test was used to rank the 
performance of each configuration against each metric1 by using pairwise comparisons. The Cochran (1950) 
and McNemar (1947) tests were used for binary metrics such as mission success. The pairwise comparisons 
consist of comparing a pair of configurations over the replications of the simulation of a particular metric. 
During the pairwise comparisons, a configuration’s score was increased by '+1' for statistically better 
outcomes, by '-1' for statistically worse outcomes or by '0' for being statistically the same. The accumulated 
score for the configurations were their statistical performance ranking value.   

Figure 1 shows the statistical rankings colour-coded in each metric type so that easy comparisons can be 
made. Each column represents a particular metric belonging to that metric type. The colours represent the 
statistical performance ranking value of the configuration in that particular metric. The darker the green 
represents better ranking performance and the darker the red represents poorer ranking performance. The 
visualisation of this statistical heatmap helps display and synthesise large and complex information. For 
example, it can provide a good indication of the configuration's performance and its trade-offs with other 
metrics. This statistical and visual analysis complements the regression analysis by showing the performance 
of the configuration as a whole, where the regression seeks to explain the important configuration 
components that contribute to performance. A summary statement drawn from Figure 1 can be that Option B 
did not perform as well as Option A in the Lethality metrics. 

 

Figure 1. An example of statistical performance rankings for each configuration. 

  

                                                            
1 COMBATXXI uses common random numbers (CRNs) primarily for design and de-bugging purposes. 
However, this induces dependencies between the configurations for each replications, necessitating the use of 
paired-sample statistical tests.  
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Regression 
The configurations for the combat vehicle options above represent full factorial designs over a small number 
of configuration components. For Option A each of four components had two level settings so the dth row of 
the design matrix (ܺௗଵ, ܺௗଶ, ܺௗଷ, ܺௗସ) is one of the 2ସ = 16 possible combinations. The regression focused 
on estimating the main effect each configuration component has on each of the metrics in Table 1 (e.g. how 
much did protection contribute to the mission success of Blue?), as well as the effect, if any, of any two-way 
interactions between components (e.g. was there a combat multiplier effect between protection and mobility 
on the number of Blue infantry killed?). We approximated the study metric for each configuration (denoted 
by ௗܻ) by an equation linear in these unknown main effects (denoted by ߚ௝) and two-way interaction effects 
(denoted by β௝௞): 

                             ௗܻ ≈ ଴ߚ + ∑ ௝ܺௗ௝ߚ + ∑ ∑ ,௝௞ܺௗ௝ܺௗ௞ߚ     ݀ = 1, … ,16௞வ௝ସ௝ୀଵସ௝ୀଵ  (1) 

or ࢅ ≈ ܪ where the model matrix ࢼࡴ = (૚, ,૚ࢄ . . , ,࢖ࢄ ,૛ࢄ૚ࢄ … , ,࢖ࢄ૚ࢄ … ,  ௝ is the j-th columnࢄ ૝) andࢄ૜ࢄ
of the design matrix  ࢄ. The Least Squares estimates of the effects are the solutions of the linear equations ࢈ܪ்ܪ = ࢈ which for a full factorial design simplifies to ்࢟ܪ = ்࢟ܪ ૛૜ൗ  (since the orthogonality of the 

design ensures the inverse of ܪ்ܪ exists and is diagonal).  

For Option B, one component had two level settings but the other component had three level settings. Since 
this latter component was qualitative, the correct approach by Kleijnen (2007) was to use three two level 
factors – one for each level setting – and to include a constraint that only one of them may be at their ‘high’ 
level setting.  So the dth row of the design matrix (ܺௗଵ, ܺௗଶ, ܺௗଷ, ܺௗସ) was one of the 2ଵ3ଵ = 6 possible 
combinations of these two components, and represented one of the Option B configurations. However, this 
design did not allow an estimation of the two-way interactions between these two components (while tables 
of mixed level designs have existed for many years, e.g. Connor & Young (1961), these have been for 2௠3௡ 
with ݉ + ݊ ≥ 5 which doesn’t apply here). The regression equation is therefore: 

                                      ௗܻ ≈ ଴ߚ + ∑ ௝ܺௗ௝ସ௝ୀଵߚ ,   ∑ ܺௗ௝ = 1, ݀ = 1, … ,6;  ସ௝ୀଶ ௝ܺ ∈ ሼ0,1ሽ (2) 

Since COMBATXXI is stochastic, its output metrics ࢅ 
were random variables and therefore so too were the 
corresponding estimated effects of ࢈. By conducting ܰ simulation repetitions we obtained ܰ samples of ࢈ 
which allowed confidence intervals for the estimated 
main effects ( ௝ܾ) and two-way interactions ( ௝ܾ௞) to be 
constructed. We defined an estimated effect to be 
statistically significant if its corresponding confidence 
interval did not contain 0 (i.e. we would reject the null 
hypothesis that the effect size is zero). We further 
defined the estimated effect to only be practically 
significant if the absolute value of its sample mean 
exceeded by a certain threshold the absolute value of 
the estimated mean value (first column of Table 2) of 
the metric over all analytical configurations ( | ఫܾഥ ത|>∆௝ݕ/ ). Statistically significant effects are listed in 
Table 2 and colour-coded to denote the relative size of 
the effects. The choice of ∆௝= 0.1 (i.e. coloured black) 
was somewhat arbitrary here, but the practically 
significant definition is important for simulation 
experiments since the estimated effect can be (somewhat artificially) made statistically significant simply by 
conducting sufficient replications. This also allowed comparison across components (for a particular metric) 
as well as across metrics (for a particular component).  

In this case study, the linear regression was able to isolate the effects of the components (or their interaction) 
of the option configurations on their operational performance but was contingent, naturally, on the accuracy 
of the fitted regression models. We computed the mean absolute percentage error (MAPE2) across the 
experimental design points for the 22 metrics and found a median MAPE of 2%; 70% of the MAPEs were 
                                                            
2 The MAPE is the average over the analytical options of the magnitude of the relative error between the 
predicted metric value and the mean of the COMBATXXI metric values over the ܰ simulation repetitions. 

Table 2. Statistically significant main and two-way 
interaction effects expressed as an absolute percentage 
of the mean metric value to allow comparison across 

both components and metrics. 
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less than 5%; and the maximum MAPE was only 12%. Consequently, we were reasonably confident with the 
identified effects illustrated in Table 2. 

There are several observations to draw from Table 2. First is the sparsity, whereby only a few metrics depend 
on multiple components and/or their interactions. Second is the relative lack of interaction and certainly a 
lack of large interactions (the seemingly large interaction between the first and last component should be 
discounted due to the smallness of the metric values – the same can be said for the two large main effects of 
the third component towards the bottom of the table). Third, across all metrics it appears that the first and 
third components have the overall greatest effect on the operational performance for that option. Finally, 
specific regression approximations can be written to capture the particular influences of components on 
particular metrics, for example if the sixth row represents a ‘losses’ metric, then: 

ݏ݁ݏݏ݋ܮ                     ≈ 2.93 − ଵܥ0.85 − ଶܥ0.30 − ଵܥ2)0.18 − ଷܥ2)(1 − 1) + ଶܥ2)0.06 − ସܥ)(1 − 1) (3) 

where the ܥ௜ have been converted to 0/1 variables to represent say a baseline component level setting and an 
elective component level setting. This clearly shows that the first two components contribute the most to 
reducing losses when employing the optional setting (with the first component contributing the most); that 
the other two components only affect losses through their interaction, the third component with the first and 
the fourth component with the second (with the third component contributing the most); but that the optional 
setting is desirable for the third component while the baseline setting is desirable for the fourth.   

3.2 Experimental Design for Sensitivity Analysis 

The previous statistical and regression analysis methods were for one particular scenario (the baseline 
scenario). In that scenario a large number of model parameters were set to default values. To determine how 
robust the previous results were, we performed a sensitivity analysis over eight of these uncertain parameters 
on a subset of the analytical configurations of both options. Sensitivity will be judged both by how much key 
metrics change and whether the ranking of configurations based on these key metrics change. 

Table 3. Difference between the statistically significant main and two-way interaction effects of a specific 
configuration from Option A and Option B, expressed as a percentage of the mean metric value to allow 
comparison across both sensitivity analysis parameters and metrics 

 

With eight parameters and the computational expense of N COMBATXXI replications, it is not practical to 
use a full factorial experimental design to conduct the sensitivity analysis in order to estimate the scenario 
parameters main effects (β୨) and two-way interactions (β୨୩). However, we can use a much smaller subset of 
these 2଼ = 256 design points that allows the main effects to be estimated unaliased with each other or with 
the two-way interactions. But the price paid for this efficient design is that two-way interactions are aliased 
with each other, so it is not possible to isolate which interaction is responsible. This so-called resolution-IV 
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fractional factorial design requires only 2଼ିସ = 16 design points. We restrict attention here to the sensitivity 
regarding two specific configurations (the following ranking analysis will explore multiple configurations).  

The regression equation is therefore: 

                                      ௗܻ(௜) ≈ ଴(௜)ߚ + ∑ ௝(௜) Xୢ୨ߚ + ∑ ∑ ,௝௞(௜)Xୢ୨Xୢ୩ߚ     d = 1, … , D;   ୩வ୨ ݅ = ,ܣ ୨଼ୀଵ୨଼ୀଵܤ  (4) 

where ݅ = ,ܣ  denotes a specific configuration from Option A and Option B, respectively. However the aliasing ܤ
structure means that only the ߚଵ௞(௜) ,  k = 2, … ,8 coefficients need to be estimated, since each share a common 
formula with three other  ߚ௝௞(௜) (e. g. ଵଶ(௜)ߚ =  ହ଺(௜)). The Least Squares estimates of the effects are theߚ=ସ଼(௜)ߚ=ଷ଻(௜)ߚ
solutions of the linear equations ࢈ܪ்ܪ = = where the model matrix ்࢟ܪ (૚, ,૚ࢄ . . , ,ૡࢄ ,૛ࢄ૚ࢄ … ,  .(ૡࢄ૚ࢄ

The results of the regression technique for the case study sensitivity analysis are shown in Table 3, where the 
relative difference in the estimated effect sizes between the specific Option A and Option B configurations 

are listed (Δ ఫܾഥ = ఫܾഥ (஺) − ఫܾഥ (஻)). Only some of the metrics (e.g. toward the top of the table) are reasonably 

insensitive to all eight parameters and the two-way interactions, which indicates that the choice of preferred 
configuration from the baseline analysis is considerably robust for these metrics. However, we note the 
presence of a number of two-way interactions between parameters across most other metrics, in contrast to 
the baseline analysis between components. Across all metrics it appears that the fifth parameter has the 
overall greatest effect on the sensitivity of the output values. Finally, specific regression approximations can 
be written to capture the particular influences of parameters on the preferred option based on particular 
metrics, for example if the row with mean value 0.36 represents a mission success (MS) metric, then: 

(ܣ)ܵܯ)ܾ݋ݎܲ                                      > ((ܤ)ܵܯ = ଵଵାୣ୶୮ [ି଴.ଷ଺(଴.ଶ଼௉ఱି଴.ଶଶ௉ఴି଴.ଶଵ௉ళି଴.ଵ଻௉భି଴.ଵ଻௉య… )] (5) 

which is an example of logistic regression. This is commonly expressed in the form of an odds-ratio, so that 
the decision sensitivity with respect to parameter ݆ (i.e. the likelihood of changing our preferred configuration 
when the j-th parameter changes from its low setting to its high setting) is the divergence of exp [2൫ߚ௝஺ ௝஻൯] from1ߚ− ∶ 1. For the fifth parameter we can estimate the odds-ratio as 1.22:1. The extension of this 
decision sensitivity setting to more than two configurations (multinomial regression) is an area for future 
research. 

Sensitivity Analysis of Ranking Performance  

Regression analysis of the sensitivity parameters 
describes the changes to the metric values for 
each configuration individually. However, it 
doesn’t show the changes in performance 
rankings due to the change in sensitivity 
parameters. For example, a configuration 
obtained a statistical ranking value of +3 in the 
baseline result set versus a value of -1 in a 
particular set of sensitivity parameters changes. 
Figure 2 provides an example of how ranking 
values change from baseline (S00) against other 
sensitivity parameter combinations (S21 to 
S36) 3 . In most cases, the ranking positions 
relative to each configuration remains the 
similar to the baseline scenario. However, the 
cases in which relative ranking positions change (such as S34), further investigation is required to explain the 
scenario was infeasible or whether the change in ranking were due to some other factor. This is where the 
regression analysis in Section 3.2 would complement the findings.  

Practical vs. Statistical Significance 

An important consideration for combat simulation studies is the distinction between statistical significance 
and operational relevance in the military context, or practical significance. There are likely to be cases where 
statistical differences are found between two alternatives but the relative difference between them has no 

                                                            
3 S21 to S36 represents the fractional factorial combination of the sensitivity parameters. 

Figure 2. Example metric of ranking performances from 
difference sensitivity changes. 
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operational impact. Currently, insights around the operational relevance of the differences between 
alternative configurations are considered via SME input after the simulations have been completed. This 
approach can lead to potential inefficiencies relating to the number of replications that need to be conducted. 
An alternative approach would be to identify the operational relevance threshold, or desired effect size, for 
each metric of interest prior to running the simulation. This may allow a smaller number of replications for 
each metric to be calculated using statistical techniques, assuming a pilot set of replications was run to 
estimate the variance of each metric. However, this approach is predicated on the assumption that the 
magnitude of the absolute values generated by the simulation is comparable to those expected in the real 
world. Anecdotal evidence indicates that combat simulations can produce trends (i.e. relative) consistent with 
real world military scenarios although the order of magnitude (i.e. absolute) of the results is likely to be 
different. Further understanding of the external validity of these models could be achieved by examining the 
results of simulation studies which model historical conflicts as described by Shine and Coutts (2006). 

4. SUMMARY 

This paper describes a COMBATXXI case study that compared land combat vehicle configurations through 
the use of statistical and regression analyses. A fractional factorial experimental design was used to conduct 
sensitivity analysis on uncertain parameters in order to determine the robustness of the baseline results. 
Further work is required to address issues related to the operational relevance of the deltas between sets of 
simulated results; the minimisation of the number of replications required for each scenario; and alternative 
factor screening and multiple comparison techniques. 
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