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Abstract: Salt marshes are vulnerable environments hosting complex interactions between physical and bi-
ological processes. The prediction of long-term vertical dynamics, i.e., marsh growth and/or reduction, is 
crucial to estimate the potential impacts of different forcing scenarios on such systems. The most significant 
processes influencing the elevation of the salt-marsh platform are accretion, auto-compaction, and the variation 
rates of the relative sea level rise, i.e., land subsidence of the marsh basement and eustatic rise of the sea level. 
The accretion term considers the vertical sedimentation of organic and inorganic material over the marsh sur-
face, whereas the compaction reflects the progressive consolidation of the porous medium under the increasing 
load of the overlying younger deposits. The present work describes a novel mathematical approach, based on 
the Virtual Element Method, for the long-term simulation of the salt marsh vertical dynamics. The Virtual 
Element approach is a grid-based variational technique for the numerical discretization of Partial Differential 
Equations allowing for the use of very irregular meshes consisting of a free combination of different polyhe-
dral elements. The modelling approach provides the pore pressure evolution within a compacting/accreting 
vertical cross-section of the marsh, coupled to a geomechanical module based on Terzaghi’s principle of ef-
fective inter-granular stress. The model takes into account the geometric non-linearity caused by the large 
salt marsh deformations by using a Lagrangian approach with an adaptive grid, where the domain geometry 
changes in time to follow the deposit consolidation and the new sedimentation. The use of Virtual Elements 
ensures a great flexibility in the element generation and management, avoiding the numerical issues often aris-
ing from strongly distorted meshes. The numerical model is developed, implemented and tested employing 
two different configurations of the sedimentation r ate. The preliminary numerical results provide evidence of 
the flexibility of the proposed approach, which appears to be a promising computational tool for the accurate 
simulation of real-world applications.
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1 INTRODUCTION

The accretion/regression of the surface elevation of a marshland is a complex process hosting the interaction
of different mechanisms. Typically, the active sediment deposition and compaction rate are the most important
driving factors, along with the possible presence of external forcing actors such as the relative sea level rise
(RSLR), the tidal and wave regimes, and the erosion (Allen, 2000; Morris et al., 2002). Since the geomor-
phological equilibrium of coastal wetlands is regulated by the interaction of sea level, land elevation, primary
production and sediment accretion (Morris et al., 2002), the analysis of the salt marsh stratigraphies plays a
key role for the reconstruction of the sea-level evolution and the deposition history. Hence, the accurate es-
timate of the marsh compaction is extremely important for a correct interpretation of the sea-level evolution,
thus avoiding its overestimation (Brain et al., 2011). However, despite its importance, the compaction term
is often computed with the aid of very simplified approaches, such as empirical relationships (Allen, 1999;
Sheldon and Retallack, 2001; Skempton, 1970), 1D compaction models (Brain et al., 2011; Paul and Barras,
1998; Massey et al., 2006), or solving the 1D groundwater flow equation based on the standard Darcy’s law
(Pizzuto and Schwendt, 1997; Kooi and de Vries, 1998).

Due to the extremely high porosity of newly deposited material, in the range of 0.5-0.9 (Brain et al., 2011), the
medium is highly deformable. In this paper, the large solid grain motion is accounted for by recasting Darcy’s
law in terms of relative velocity of fluid to grains. The porous matrix undergoes a progressive 1D vertical
consolidation under the effect of an increasing load due to the new deposition of sediments and the related
overpressure dissipation.

The present work describes a novel mathematical approach, based on the Virtual Element Method (VEM), for
the long-term simulation of the salt marsh vertical dynamics. The VEM approach is a grid-based variational
technique for the numerical discretization of PDEs allowing for the use of very irregular meshes consisting of
a free combination of different polyhedral elements. The modeling approach provides the pore pressure evo-
lution within a compacting/accreting vertical cross-section of the marsh, coupled to a geomechanical module
based on Terzaghi’s principle of effective intergranular stress. Soil properties, such as porosity, permeability,
and compressibility, vary with the effective intergranular stress according to empirical non-linear constitutive
relationships. The model takes into account the geometric non-linearity caused by the large salt marsh defor-
mations by using a Lagrangian approach with an adaptive grid, where the domain geometry changes in time to
follow the deposit consolidation and the new sedimentation. The use of the VEM approach for integrating the
governing PDEs ensures a great flexibility in the element generation and management, avoiding the numerical
difficulties arising from strongly distorted meshes.

The effectiveness and potential of the VEM approach is investigated in two preliminary test cases, where the
numerical model is used to simulate the vertical marsh evolution in a time lapse of hundreds of years. In
particular, two loading conditions are considered, thus leading to a different evolution of the computational
grid. The paper is organized as follows. Section 2 and 3 describe the PDEs governing the groundwater flow and
the porous medium compaction modules, along with their numerical discretization using the VEM approach.
The model set-up and the preliminary results obtained with the proposed modeling framework are described
and discussed in Section 4. A few concluding remarks close the presentation.

2 GROUNDWATER FLOW AND COMPACTION MODELS

The rigorous formulation of the PDE governing the 1D flow in an elastic saturated porous medium subjected
to large deformations was originally proposed by Gambolati (1973a,b), where the hypothesis of infinitesimal
displacements of the solid grains is relaxed by the introduction of a geometric non-linearity. Considering a
2D domain undergoing a vertical (1D) compaction/accretion process, the groundwater flow equation can be
written as (Zoccarato and Teatini, 2017):
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where kx and kz are the horizontal and vertical hydraulic conductivities, γ is the specific weight of water, cb
is the soil oedometric compressibility, φ is the soil matrix porosity, β is the volumetric water compressibility,
p is the incremental pore pressure with reference to the hydrostatic condition, x and z are the horizontal and
vertical coordinates, t is time, and D is total or Eulerian derivative:
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with vg,z the vertical grain velocity.

Equation (1) holds true under the following assumptions: (i) kx and kz are equal to k∗xγ/µ and k∗zγ/µ, respec-
tively, with constant values for k∗x, k∗z , and µ, i.e., the medium intrinsic horizontal and vertical permeability
and the water viscosity; (ii) γ = γ0 exp[β(p0 + p)], where γ0 and p0 are initial reference values for γ and p,
respectively; (iii) the relative Darcy’s law can be applied:

φ(vw,i − vg,i) = −ki
∂ψ

∂i
, i = x, z (2)

with vg,i and vw,i the (absolute) velocity of solid grains and water along the i direction, respectively, and ψ

the hydraulic head expressed as ψ = z +
p∫
0

dp
γ . Notice that for the specific process of interest, vg,x is assumed

to be negligible and only a vertical grain motion is considered; (iv) incompressible solid grains; and (v) the
total stress is constant and expressed by Terzaghi’s principle in the form σt = σz,0 + σz + p0 + p, with σz,0
and σz the initial and incremental intergranular effective stress, respectively.

The oedometric compressibility cb can be obtained by laboratory tests on soil samples and is related to the
classical compressibility, α, by (Gambolati et al., 1998):

cb =
pdαdp + α

1 + αp
(3)

Thus, cb and α coincide when p tends to zero.

The soil matrix compaction, u(z, t), and the grain velocity, vg(z, t), are given by (Gambolati et al., 1998):
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dz (4)

vg,z(z, t) = (1− ασz)
∫ z

0

(α+ σz
∂p
∂t )

(1− ασz)2
dz (5)

To account for the organic/inorganic sediment deposition over the marsh surface, a sedimentation rate, ω(x, t),
is prescribed and, consequently, the total stress σt of the compacting column is no longer constant as assumed
in equation (1). Introducing equation (5) into (1) and neglecting the second-order terms yields (Zoccarato and
Teatini, 2017):
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In natural conditions, the variation of the total stress is due to the change of load caused by sediment deposition
over the marsh surface:

Dσt = ω(1− φ0)(γs − γ) (7)

with γs the specific weight of the grains and φ0 the initial porosity at σz,0.

Equation (6), equipped with appropriate initial and boundary conditions, governs the 2D groundwater flow
in a cross-section of a deforming porous medium. The resulting incremental pore pressure distribution is
then used in equation (4) to compute the current increment of vertical effective stress and predict the medium
deformation.

3 NUMERICAL MODEL

The numerical solution of equations (4) and (6) is obtained by using a Lagrangian approach (Zoccarato and
Teatini, 2017), where a dynamic mesh is employed and the grid nodes follow the grains during the consoli-
dation process. In this way, over a moving node the Eulerian derivative Dp can be treated as a partial time
derivative ∂p/∂t.

The discretization of the governing equations is performed with the aid of the Virtual Element Method (VEM).
The VEM approach is a novel numerical technque that can be regarded as a generalization of the classical
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conforming Finite Element Method (FEM) to general polygonal and polyhedral elements. At the same time,
many theoretical aspects of VEM are intimately connected to Mimetic Finite Differences (MFD), so that the
VEM can be also viewed as the ultimate MFD evolution able to preserve the attractive features with a greater
ease of implementation. For many problems, the resulting systems of discrete equations are the same as MFD
and, for a particular element choice, also FEM. In general, however, VEM offers additional possibilities with
respect to FEM and MFD.

The basic VEM idea relies on selecting the approximation spaces and the degrees of freedom in such a way
that the elementary stiffness matrix can be computed knowing the shape functions only on the boundary of
each element. The VEM has been introduced quite recently (da Veiga et al., 2013), nevertheless several works
already highlight the main theoretical properties and practical details on its implementation, e.g. da Veiga et al.
(2014), Sutton (2016), and references therein. However, very few applications have been developed so far to
real-world engineering and environmental problems. In particular, to our knowledge this is the first time VEM
is used for the solution of the salt marsh vertical dynamics.

To briefly describe the low order VEM, we start from a decomposition of the PDE domain into general polygo-
nal elements whose boundaries are not self-intersecting. As unknowns, we take the values of the approximating
function at the vertices of the elements. For an elliptic differential operator, the weak variational form of the
PDE uniquely defines on each element the approximating function through a linear interpolation of the nodal
values along the element boundary and a harmonic extension inside the element. To avoid the local solution of
a Laplace problem on an element-by-element basis, a different procedure is introduced in order to ensure con-
sistency and stability of the numerical scheme. This is based on the use of two operators on each element: (a)
a projection Π∇, related to the bi-linear form of the problem, and (b) the L2−projection Π0 useful to address
the time-dependent term. The local stiffness and mass matrices at the elemental level will be the sum of two
matrices, one assuring consistency and the other one stability. For the numerical details in the computation of
such matrices, the reader can refer to da Veiga et al. (2014); Sutton (2016). The VEM discretization leads to a
system of non-linear ordinary differential equations:

H(p)p + P (p)
dp

dt
+ f(p) = 0 (8)

which is numerically integrated by a backward Euler method in time and a fixed-point iteration scheme. Note
that the right-hand side f(p) accounts for both boundary conditions and external forcing functions, i.e., the
source term cb(σz)(1− φ0)(γs − γ)ω(x, t) (Equation 7).

The numerical solution procedure is implemented as follows (Zoccarato and Teatini, 2017). First, the sedimen-
tation thickness is computed accounting for the material deposited during the time step ∆t, with the total stress
σt updated accordingly. Then, the solution p at the current time step is computed through a fixed-point itera-
tion. At the m-th linear step of the non-linear scheme, the solution p(m) is used to update σ(m)

z = σt − p(m)

keeping σt constant within each time step. Using σ(m)
z and the constitutive relationship of the porous medium,

the parameters kx(σ
(m)
z ), kz(σ

(m)
z ), φ(σ

(m)
z ), α(σ

(m)
z ), and cb(σ

(m)
z ) are also updated. The medium com-

paction is then computed through equation (4), stretching the grid node positions to start a new iteration. After
convergence, i.e., ‖p(m−1) −p(m)‖ < τ for some user-specified tolerance τ , the mesh is finally adjusted and,
if necessary, new elements are added on the top of the marsh.

4 MODEL SET UP AND RESULTS

The proposed numerical scheme is employed to investigate the effectiveness of the methodology using two
simple test cases. At the beginning of the simulations, a 2D section of a salt marsh is schematically represented
by a rectangular domain (Figure 1). The grid extends for 1.50 m along the x−coordinate and is 0.15 m-deep,
with 10 uniform layers 0.015 m-thick. The domain is initially discretized into a structured triangular grid
consisting of 1650 nodes and 2980 elements, as shown in Figure 1. The mesh evolves in time by updating
the node positions and adding new elements because of the sediment deposition on the top of the marsh.
For the sake of simplicity, the marsh is here considered as a homogenous porous material characterized by
geomechanical properties that vary with the inter-granular vertical effective stress according to a linear law.
The initial porosity of the fresh material is 0.981 with a compressibility equal to 6.2 · 10−5 kPa−1. The
soil grains are assumed incompressible with specific weight γs = 20.2 kN. The hydraulic conductivity field
is uniform and isotropic with kx = kz = 1.0 · 10−7m/s. The boundary conditions are prescribed such that
Dirichlet null values, i.e., hydrostatic pressure, are set on the top and on left boundary of the domain to simulate
saturated condition on the marsh surface and the presence of a tidal creek at the marsh left edge. The basement
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Figure 1. Initial mesh at time ti = 0 yr for both test cases.

Figure 2. Mesh and p distribution at tf = 100 yrs for the uniform load ω1.

is assumed impermeable and any in and/or out fluxes are prevented. The right edge of the domain is a no-flux
boundary representing a symmetry axis for the marsh. Two different distributions of the sedimentation rate
are considered for testing purposes. In the first case, a uniform function ω(x, t) is considered with a constant
value ω1 = 0.001 m/yr, whereas, in the second test, ω(x, t) is a function of space and time varying according
to the exponential law ω2 = ω1e

−x/lc where lc = 0.04 m. The time discretization is ∆t = 1 yr from ti = 0
yr up to the final time tf = 100 yrs.

In the first test case, at each time time step, a constant value of the sedimentation thickness z = ω · ∆t is
computed and added at each node of the marsh surface. Then, these values are compared with a maximum
sedimentation thickness zmax. If the computed z is less than zmax, the value of the thickness of each element
is updated (by updating the z−coordinates of each nodal value), otherwise, new elements are added on the
top of the marsh domain. To verify the potential of the VEM approach, new nodes and new elements are
constructed in such a way that irregular triangles and quadrangles are added to the uniform triangular mesh.
In particular, the position of every new node is perturbed by a random value, so that the newly generated
elements have a random shape. Notice that initially the VEM solution on the triangular grid coincides with the
FEM outcome. With the introduction of the new irregular elements, the VEM outcome still displays a smooth
and accurate profile, even on general polygonal elements. Figure 2 shows the sedimentation rate ω1 and the
overpressure p at tf . The number of nodes and elements increase to 2550 and 3880, respectively. The uniform
sedimentation leads to a uniform surface elevation from 0.15 m to 0.23 m with an overall compaction of 0.02
m. The second test represents a more realistic configuration where the inflow of inorganic sediments from the
tidal creek into the marsh surface is simulated. The typical sedimentation rate has a spatial exponential decay
as shown in Figure 3. The maximum overpressure is lower than in the previous case although the pressure
distribution within the domain is quite similar. The number of nodes and elements increases up to 1843 and
3173 at tf with a maximum marsh height of 0.23m at left edge. On the marsh right edge, no elements are
added because z is always lower than the threshold zmax.

As highlighted in Figure 4, the zoom of the upper-left mesh of Figure 3 shows a grid with the simultaneous
presence of both triangular and quadrangular elements. Moreover, these elements are expressly distorted
along the x−coordinate to stress the potentiality of the VEM approach on general polygonal grids. Figure 4
also shows the differential compaction undergoing the grid elements. In particular, the element deformation
diminishes from left-to-right edges due to the decreasing of the loading conditions.
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Figure 3. Mesh and p distribution at tf = 100 yrs for the exponential load ω2(x, t).

Figure 4. Zoom of the grid obtained in the second case at time t = 100 yrs.

Although the outcome of these test cases is quite preliminary, such applications provide evidence that the VEM
approach well performs on irregular grids, allowing for a great flexibility in the discretization of any domain
and avoiding problems related to mesh distortions. The solution in terms of overpressure in not affected by the
element shape and the numerical accuracy is of the same order as the one obtained with the FEM approach on
a regular triangular mesh (not shown here).

5 CONCLUSIONS

In this paper, the vertical dynamics of a marsh surface is investigated by using a 2D groundwater flow model
coupled with a 1D geomechanical module discretized using the Virtual Element Method. This discretization
technique appears to be particularly promising in this application as compared to the standard FEM due to
its flexibility in the element generation and management. Due to the high porosity and compressibility of the
newly-deposited material, the model takes also into account the geometric non-linearity caused by the large
salt marsh deformations. The use of a VEM approach potentially avoids the numerical problems arising from
strongly distorted meshes.

Two test cases are carried out to show the possible applications of the proposed methodology. The tests differ
for the space and time distribution of sedimentation rate over the marsh surface. The results show a possible
construction of an adaptive mesh with distorted elements, but not affecting the numerical solution. The use
of VEM is encouraging in applications where the mesh should adapt to the evolution of a dynamic system,
avoiding expensive re-meshing procedures at each time step, such as those implemented by Zoccarato and
Teatini (2017), with an overall reduction of the computational cost. Further developments are expected when
the material heterogeneity is introduced in the modeling framework to simulate the behavior of soils with
different hydro-geomechanical properties.
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