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Abstract: Rainfall data provide an important input for various water resources management tasks. 
Hydrologists are often required to estimate areal average rainfall over the catchment and/or point rainfall 
values at unsampled locations from observed sample measurements at neighboring locations. Accurate 
spatial distribution of rainfall can be achieved through a dense network of rain gauges. However, the rain 
gauge network is usually sparse in most cases and thus sufficient point rainfall measurements are not 
available, which are often unable to characterize the spatial distribution of highly variable rainfall. Spatial 
interpolation method plays an important role in such cases to estimate rainfall at unrecorded locations (i.e., 
missing data) using the observed rainfall available at surrounding locations. 

Conventionally, variance-dependent stochastic spatial interpolation methods such as kriging are the most 
commonly used methods for estimating the point rainfall values at any desired locations based on the 
available recorded values at neighboring rain gauges. However, traditional kriging has a major weakness 
because it requires a priori definition of mathematical function for the variogram model that represents 
spatial correlations among data points and thus significantly impacts the performance of the methods. The 
robustness of kriging methods heavily depends on how the variogram model is constructed. Moreover, 
selection of appropriate variogram model, finding the optimal variogram parameters (i.e., nugget, range, sill) 
and the computational burden involved are some of the difficulties involved with the traditional kriging. 

More recently, data-driven models using evolutionary and biological principles including genetic algorithms, 
artificial neural networks have been used with kriging for spatial interpolation of rainfall. Genetic 
programming (GP) is another evolutionary data-driven modelling technique to approximate function. The 
key advantage of GP is that it does not assume any a priori functional form of the solution and GP inferred 
models offer some possible interpretations to the underlying process. The aim of this study is to investigate 
the suitability of GP for variogram modelling to derive the variogram model and use of the GP-derived 
variogram model in combination with traditional ordinary kriging for spatial interpolation of rainfall. This 
new variant of kriging is referred to as genetic programming-based ordinary kriging (GPOK) in which the 
GP-derived variogram model replaced the standard parametric variogram models (i.e., exponential, gaussian, 
spherical) in the traditional ordinary kriging.  

Developed genetic programming-based ordinary kriging (GPOK) method was then applied to estimate the 
unknown rainfall values at a rain gauge station through spatial interpolation using the historical rainfall data 
from 19 rain gauge stations in the Middle Yarra River catchment of Victoria, Australia. The results indicated 
that the GPOK method outperformed the traditional ordinary kriging method for spatial interpolation of 
rainfall and yielded better rainfall estimates. The results also showed that the function approximation 
capability of GP produces the best fitted GP-derived variogram model compared to the standard models. 
Moreover, variogram model fitting by GP was very quick since GP did not require identifying the variogram 
parameters in advance unlike the standard variogram models in the traditional kriging method. Thus, use of 
GP, as a universal function approximator, for variogram modelling eliminates the time consuming and 
tedious job of trial and error for determining the optimal variogram parameters as necessary with the standard 
variogram models. This results in the significant reduction in the computation complexity by the GPOK 
method. Therefore, the GP-derived variogram model seems to be a potential alternative to variogram models 
used in the past and the proposed GPOK method is recommended as a viable option for improved spatial 
interpolation.  
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1. INTRODUCTION 

Rainfall data provide an essential input for most hydrologic analyses and designs for effective management 
of water resources systems. Accurate spatial distribution of rainfall can be achieved through a dense network 
of rain gauges. However, the rain gauge network is usually sparse in most cases and thus point rainfall 
measurements are not sufficient to characterize the spatial distribution of highly variable rainfall (Adhikary et 
al., 2015). Spatial interpolation method plays a vital role in such cases to estimate rainfall at unrecorded 
locations (i.e., missing rainfall data) using the observed rainfall available at surrounding locations.  

Deterministic, stochastic and data-driven interpolation methods have been employed in the past to estimate 
the missing rainfall data. Deterministic methods such as inverse-distance weighting have been extensively 
used for estimating missing rainfall (ASCE, 1996). Although they have been improved over time, their 
limitations continue to exist (Teegavarapu, 2007). Stochastic interpolation method such as the kriging is 
another commonly used method. In particular, ordinary kriging (OK) remains one of the most preferred 
methods, which has been widely used to interpolate point rainfall measurements for missing rainfall 
estimation (Webster and Oliver, 2007). However, the main drawback of kriging is that it is highly dependent 
on the variogram model that defines the spatial variability of the data. Moreover, selection of appropriate 
variogram model, finding the optimal variogram parameters (i.e., nugget, range, sill) and the computational 
burden involved are some of the difficulties associated with the traditional kriging.  

More recently, data-driven models using evolutionary and biological principles, namely genetic algorithms 
(GA), artificial neural networks (ANN), adaptive neuro-fuzzy inference system, and support vector 
regression, have been used with kriging for spatial interpolation of rainfall and missing rainfall estimation 
(Chang et al., 2005; Teegavarapu, 2007; Teegavarapu et al., 2009; Kisi and Sanikhani, 2015). However, 
ANN and GA usually do not provide analytical equations, and it is generally not easy to interpret the network 
weights obtained from the obtained models by ANN (Muttil and Lee, 2005). 

Genetic programming (GP) (Koza, 1992) is another evolutionary data-driven modelling technique, which can 
be used for function approximation. GP inferred models have the advantages of generating simple 
expressions and thus offering some possible interpretations to the underlying process (Muttil and Lee, 2005). 
The key advantage of GP is that it does not assume any a priori functional form of the solution. Several 
applications of GP in water resources research have been reported, which include rainfall-runoff simulation 
(Khu et al., 2001; Liong et al., 2002; Yilmaz and Muttil, 2014), prediction of algal blooms (Muttil and Lee, 
2005; Sivapragasam et al., 2010), friction factor simulation (Roushangar et al., 2014), sediment transport 
modelling (Babovic and Abbott, 1997), vegetation effect on flow in wetlands (Harris et al., 2003). To the best 
knowledge of the authors, GP has not been applied for variogram modelling in the past and hence the aim of 
this study is to apply GP for variogram modelling to be used with kriging. 

In this study, a new variant of kriging method with the combination of GP-derived variogram model and OK 
was proposed and evaluated for estimating missing rainfall data at a gauging station located in the Middle 
Yarra River catchment, Australia. The proposed form of kriging is referred to as genetic programming-based 
ordinary kriging (GPOK) in which the standard parametric variogram models (i.e., exponential, gaussian, 
spherical) used with the traditional OK were replaced with the GP-derived variogram model. 

The paper first presents details of the study area and data used for the analysis in Section 2, which is followed 
by a brief description of traditional OK and proposed GPOK methods with their application for missing 
rainfall estimation in Section 3 and Section 4. The results and discussion are then presented in Section 5 and 
finally, the conclusions are drawn in Section 6.  

2. STUDY AREA AND DATA USED 

The Yarra River catchment in Victoria, Australia covering an area of 4044 km2 has three distinctive sub-
catchments: Upper Yarra, Middle Yarra, and Lower Yarra segments (Adhikary et al, 2015). The middle 
segment of the catchment with an area of 1511 km2 was selected as the case study area, which is shown in 
Figure 1. Accurate rainfall estimation is vital for the precise computation of future streamflows for optimal 
reservoir operation in the Upper and Middle segments and effective flood controls in the lower urbanized 
segment. 

Historical daily rainfall data for 1980-2012 (12054 days) period from 19 rain gauges operated by the Bureau 
of Meteorology (BoM), Australia in the Middle Yarra River catchment (Figure 1) were used for the analysis. 
The average annual rainfall based on the collected data varied between 508.1mm to 1913.9mm with the 
highest rainfall in the southern, eastern and north-eastern part and the lowest rainfall in north-western part of 
the study area. The wettest month is September (rainfall equals to 112.5mm) with the highest rainfall 
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variation and February is the driest month (rainfall equals to 56.4mm) with the second highest rainfall 
variation. The elevation varies from 25m (lowest-mainly in the central, north-western and western part) to 
1243m (highest-mainly in the northern, north-eastern and eastern part) with a mean elevation of 621m above 
mean sea level. 

 

Figure 1. The study area (Middle Yarra River catchment) showing the rain gauge stations (station 11 
(BoM ID: 86367, Seville) is the base station at which the missing rainfall data are to estimated) 

3. ORDINARY KRIGING 

Kriging refers to a surface interpolation technique based on spatially dependent variance, which estimates 
variable values at desired locations in space using the known sampling values (Webster and Oliver, 2007). In 
this study, OK was used for the spatial interpolation of point rainfall data for missing rainfall estimation, 
which is known as the best linear unbiased estimator of a variable at unsampled location with an unknown 
constant mean (Teegavarapu, 2007). 

The general expression of OK to estimate missing value of a variable Z (rainfall in this study) at desired 
location ݔ଴, ܼை௄௠  :in space is given by (଴ݔ)

ܼை௄௠ (଴ݔ) =෍ݓ௜ை௄ܼ(ݔ௜)௡
௜ୀଵ 																																							where				෍ݓ௜ை௄ = 1௡

௜ୀଵ 																																																								(1) 
Where ݓ௜ை௄ is the kriging weights associated with the observation at location ݔ௜ with respect to ݔ଴, which is 
usually determined based on the variogram model, and	݊ indicates the number of observed data points.  

The kriging technique highly depends on the variogram model that defines the spatial structure of the data. 
The variogram model gives variogram values for any distance and allows a unique and stable solution for the 
kriging weights. Traditional OK method generally uses standard variogram models ߛௌ௧ௗ(ℎ). In this study, 
three most commonly used variogram models in hydrology, namely, exponential, gaussian, spherical models 
were considered. Initially, an experimental variogram was derived based on the observed rainfall and then 
variogram model was fitted to the experimental variogram. Fitting of variogram model was performed by 
GS+ software (Robertson, 2008). The model fitted with the lowest root-mean-square error (RMSE) and mean 
absolute error (MAE), and the highest coefficient of correlation (CC) was chosen as the best variogram 
model. Finally, the adequacy of the adopted standard variogram model was tested by a leave-one-out cross-
validation procedure. In this study, mean standardized error (MS), root-mean-square error (RMSE), mean 
kriging standard error (MKSE), and root-mean-square standardized error (RMSS) were used as cross-
validation statistics. MS, RMSE and MKSE close to 0, and RMSS close to 1 indicate that the variogram 
model is satisfactory to yield accurate interpolation results by kriging (Adhikary et al., 2015).  
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4. GENETIC PROGRAMMING-BASED ORDINARY KRIGING 

In this study, the GP-derived variogram model was combined with the traditional OK to form the proposed 
GPOK method. The conceptual difference between the traditional OK and the proposed GPOK methods is 
shown in Figure 2. As can be seen in the figure, the variogram model derived by GP replaces the standard 
variogram models in the traditional OK to develop the proposed variant of kriging, which was referred to as 
the GPOK method. The main advantage of the proposed GPOK method is that the GP-derived variogram 
model does not require identifying the variogram parameters in advance unlike the standard variogram 
models and thus the GPOK method is free from tedious trial and error task of finding the parameters. 

 
  (a) Traditional ordinary kriging (OK) method 

 
    (b) Genetic programming-based kriging (GPOK) method 

Figure 2. Conceptual difference between the traditional ordinary kriging and GPOK methods 

The general expression of GPOK to estimate missing value of variable Z (rainfall in this study) at desired 
location ݔ଴, ܼீ௉ை௄௠  :in space is given by (଴ݔ)

ܼீ௉ை௄௠ (଴ݔ) =෍ݓ௜ீ ௉ை௄ܼ(ݔ௜)௡
௜ୀଵ 																																							where				෍ݓ௜ீ ௉ை௄ = 1௡

௜ୀଵ 																																																			(2) 
Where, ݓ௜ீ ௉ை௄ is the kriging weights associated with the observation at location ݔ௜ with respect to ݔ଴, which 
is determined based on the GP-derived variogram model ீߛ௉(ℎ). ீߛ௉(ℎ) is the variogram value that comes 
from the GP-derived variogram model. 

In this study, GP was used as a universal functional approximator to fit the experimental variogram in order 
to obtain the GP-derived variogram model. GP is a relatively new automatic programming technique for 
evolving computer programs to solve problems (Koza, 1992). In engineering applications, GP is frequently 
used as a universal function approximator to approximate and interpret the underlying structure of either a 
natural or experimental process (Muttil and Lee, 2005). What makes GP unique compared to the traditional 
data-driven methods is that it provides the underlying structure of the process in the form of a mathematical 
function (or equation), which can be scientifically interpreted to derive knowledge about the process to be 
modelled. Moreover, it does not assume any a priori functional form of the solution. 

The basic search strategy behind GP (Koza, 1992) is a GA. It differs from the traditional GA in that it usually 
operates on parse trees instead of bit strings to approximate the equation that best describes how the output 
are related to the input variables. A parse tree is formed by a terminal set (the variables involved in the 
problem) and a function set (the basic operators used to form the function). As a GA, GP proceeds by 
initially generating a population of random parse trees, calculate their fitness – a measure of how well they 
solve the given problem and subsequently selects the better parse trees for reproduction and recombination to 
form a new population. This process of selection and reproduction iterates until some stopping criteria is 
satisfied. The recombination takes place by crossover and mutation. For a comprehensive description of GP 
from water resources perspective, the readers are referred to Babovic and Keijzer (2000), Khu et al. (2001), 
Muttil and Lee (2005). 

Mathematically, the GP-derived variogram model ீߛ௉(ℎ) in this study is given by: ீߛ௉(ℎ) = ݂(Average lag distance between stations, h )																																																																																		(3) 
In this study, GPKernel, developed by DHI Water and Environment (Babovic and Keijzer, 2000) was used 
for implementing GP to obtain the GP-derived variogram model. The GPKernel is a command line based tool 
for finding the underlying functions (in mathematical form) on data. The model with the lowest RMSE and 
MAE values and the highest CC value was chosen as the best GP-derived variogram model, which was 
finally checked by the cross-validation and positive definiteness test before using in kriging. The positive 
definiteness condition for a variogram model demonstrates that the variance obtained based on the variogram 
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model remains always positive (Webster and Oliver, 2007). Teegavarapu (2007) mentioned that developing 
and selecting a new variogram model (for example, the GP-derived variogram model in this study) other than 
the standard ones may not result in a unique and stable solution for the kriging weights, if the positive 
definiteness condition is not satisfied. He also indicated that only the standard variogram models (i.e., 
exponential, gaussian, spherical) usually satisfy the positive definiteness condition. Therefore, the GP-
derived model should satisfy the cross-validation and positive definiteness tests simultaneously before it can 
be used for spatial interpolation of rainfall by the GPOK method. 

5. RESULTS AND DISCUSSION 

5.1. Modelling Experimental Variogram by Standard Variogram Models 

For variogram modelling, first an experimental variogram was computed based on the mean daily rainfall 
data. Initially, the directional variograms in the X and Y directions were computed. However, they were 
found to be noisy due to lack of sufficient data points in these directions. Therefore, an isotropic 
experimental variogram was computed ignoring the effect of anisotropy on variogram parameters. Isotropy 
refers to a property that indicates the spatial autocorrelation between two locations changes only with the 
distance (Webster and Oliver, 2007).  

The experimental variogram was then modelled by three standard variogram functions (i.e., exponential, 
gaussian, spherical models in this study). The variogram parameters (i.e., nugget, range, and sill) were 
iteratively changed using GS+ software to obtain the best fitted model. The parameters that resulted in the 
best fitting performance based on RMSE, MAE, and CC values were identified as the optimal variogram 
parameters and the corresponding models were selected as the best fitted variogram model. The functional 
forms obtained for the standard variogram models are given in Table 1. These standard variogram models 
provide variogram values ߛ௦௧ௗ(ℎ)	to determine the kriging weights in Equation (1) in traditional OK. Table 2 
shows the fitting performance and cross-validation results of the fitted models, which indicate that the 
gaussian model is the best fitted standard variogram model considering all three measures. The results also 
indicate that these models satisfy all the cross-validation criteria and are thus appropriate for use in kriging. 

Table 1. Functional forms obtained for different variogram models 

Variogram model Functional forms 

Standard variogram model 

Exponential  ߛ(ℎ) = 0.001 + 0.460 ൤1 − exp ൬− 3ℎ36.96൰൨ 
Gaussian ߛ(ℎ) = 0.035 + 0.344 ቈ1 − expቆ− 3ℎଶ(16.14)ଶቇ቉ 
Spherical ߛ(ℎ) = ቐ0.001 + 0.381 ቈ 1.5ℎ20.38 − 0.5ℎଷ(20.38)ଷ቉ for		ℎ ≤ 20.380.382 for			ℎ > 20.38 

Variogram model by GP 

GP-derived ߛ(ℎ) = ቐ0.023 + 0.344 ቈ1 − expቆ− 3ℎଶ(16.14)ଶቇ቉ 					for			ℎ < 4.3930.4206139 expሾ(4.438975)ଵ.଼଻ସସ (ℎ)ଵ.଺଴ସଷ⁄ ሿ⁄ 		for			ℎ ≥ 4.393 

  Note: h is the distance in km 

5.2. Modelling Experimental Variogram by Genetic Programming 

For modelling experimental variogram using GP, simple function sets (+, -, *, /, x2, exp) exists in the 
standard variogram functions (Table 1) were adopted for the GP runs in order to generate simple GP-derived 
variogram models. It was intended that the evolved GP models based on these function sets could exhibit a 
similar structure of the standard variogram models. Minimization of the RMSE was used as the objective 
function for the evolution of best fitted model by GP. In this study, the optimal functional form of the GP-
derived variogram model was obtained using a population size of 500, crossover rate of 0.95, mutation rate of 
0.05 and the number of generations as 500.  

The functional form of the GP-derived variogram model is given in Table 1, which provides variogram 
values ீߛ௉(ℎ) for computing the kriging weights in Equation (2) in GPOK. It can be also seen from Table 1 
that the GP-derived variogram model consists of a simple structure similar to that of the standard variogram 
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models. This indicates the advantage of GP over other traditional data-driven methods such as ANN for 
variogram modelling because of its ability to build models with a simple structure. Moreover, fitting of the 
experimental variogram by GP was very quick since GP did not require a pre-defined mathematical form or 
architecture unlike ANN to generate the variogram model. Furthermore, the GP-derived variogram model did 
not require identifying the variogram parameters in advance unlike standard variogram models. As a result, 
variogram modelling by GP was free from the trial and error process of estimating the variogram parameters. 
Hence, the GP-derived variogram model seems to be an alternative to the standard variogram models.   

Table 2. Performance measures and cross-validation statistics for fitted variogram models used in kriging 

Variogram model 
Goodness-of-fit measures  Cross-validation statistics 
RMSE MAE CC  MS RMSE MKSE RMSS 

Exponential 0.0268 0.0211 0.972  -0.1006 0.4691 0.4500 1.0424 
Gaussian 0.0227 0.0187 0.978  -0.1100 0.5403 0.5500 0.9824 
Spherical 0.0247 0.0211 0.974  -0.1215 0.3922 0.3960 0.9905 
GP-derived 0.0204 0.0155 0.982  -0.0155 0.3582 0.3840 0.9328 

As can be seen from Table 3, the GP-derived variogram model satisfied all the cross-validation criteria and 
also resulted in the best fitting performance over the standard variogram models. In order to test the positive 
definiteness condition, the kriging variance based on the GP-derived variogram model was calculated for all 
19 rain gauge locations, which was found positive. This confirms that the GP-derived model and its 
corresponding covariance function satisfy the positive definiteness condition. Thus, the GP-derived model is 
capable of providing a unique and stable solution for the kriging weights in GPOK method.  

5.3. Spatial Interpolation of Rainfall by Traditional OK, and GPOK methods 

In this study, the traditional OK and proposed GPOK methods were applied to estimate missing rainfall data 
at a base station (i.e., Seville, station no. 11 in Figure 1). The base station refers to a station with missing data 
where the estimation is desired through spatial interpolation of the data available from the surrounding 
stations. In order to test the robustness of the proposed GPOK method, it was assumed that the data were 
missing at the base station (although the data were available). The traditional OK was implemented through 
GS+ software and the proposed GPOK was implemented through a customized spreadsheet application 
developed in the Microsoft Excel platform. The performance of the traditional OK and proposed GPOK 
methods was compared using the commonly used and widely recognized error measures, namely, RMSE and 
MAE based on the observed and estimated rainfall data at the base station. 

Two-third (i.e., 8000 days) of the total historical data (i.e., 12054 days) were used for estimating the kriging 
weights and the missing rainfall was estimated for the rest one-third (i.e., 4054 days) data and the 
performance of both methods was compared. In case of traditional OK method, the three standard variogram 
models as provided in Table 1 were used to determine the kriging weights and thus estimate the missing 
rainfall data at the base station using Equation (1) through spatial interpolation. In case of GPOK method, the 
GP-derived variogram model as presented in Table 1 was used to determine the kriging weights and thus 
estimate the missing rainfall data at the base station using Equation (2) through spatial interpolation. The 
kriging variance was also estimated by the GPOK method at the base station (i.e., Seville, station no. 11), 
which was found as 0.175 mm2. The variance is positive and hence the pre-requisite positive definiteness 
condition was satisfied by the GP-derived variogram model and there the GPOK method. 

Table 3. Performance of traditional ordinary kriging and GPOK methods for spatial interpolation of rainfall 

Method RMSE 
Improvement of 

RMSE by GPOK (%) 
MAE 

Improvement of 
 MAE by GPOK (%) 

OKE 1.722 11.6 0.583 23.5 
OKG  1.653 7.9 0.547 18.5 
OKS  1.734 12.2 0.603 26.1 
GPOK  1.522 - 0.446 - 
Note: OKE - OK with the exponential variogram model; OKG - OK with the gaussian variogram model 

OKS - OK with the spherical variogram model; GPOK - OK with the GP-derived variogram model 

Results obtained for the performance of the aforementioned traditional OK and proposed GPOK methods are 
presented in Table 3. As can be seen from the table that OK with the gaussian variogram model yielded the 
best performance when compared to OK with remaining two standard variogram models (i.e., exponential, 
spherical). It is also seen that the performance of the proposed GPOK method outperformed the traditional 
OK with all the three standard variogram models for estimating the missing rainfall values at the base station. 
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When comparing the performance of the GPOK method with the best traditional kriging (OK with the 
gaussian variogram model) method, a reduction in error of 7.9% for RMSE and 18.5% for MAE was 
obtained with the GPOK method. Therefore, it can be concluded that use of the GPOK over traditional OK 
method results in a significant reduction of error for missing rainfall estimation, and thereby provides more 
accurate estimates of rainfall at the base station.       

6. CONCLUSIONS 

In this study, a new spatial surface interpolation method was proposed, which is referred to as the genetic 
programming-based ordinary kriging (GPOK) method. In the proposed GPOK method, GP was used as a 
universal function approximator to obtain the GP-derived variogram model that was used as an alternative to 
the standard variogram models in traditional OK. This study finally evaluates the efficacy and robustness of 
the newly proposed GPOK method over traditional OK method through a case study aimed at estimating 
missing rainfall data with the objective of minimizing the estimation error. The proposed GPOK method 
provided the best performance of the spatial surface interpolation when compared to the traditional OK 
method. Therefore, this study concludes that the fusion of geostatistical (ordinary kriging) and data-driven 
(GP) techniques is effective and has a high potential for spatial surface interpolation. 
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