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Abstract: Treated wastewater from Waste Stabilisation Ponds (WSPs) is a potential resource, especially in 
regional and remote areas facing water shortages. As the ultimate goal of reusing treated wastewater is ensuring 
that it is fit-for-purpose, the comprehensive assessment, management and communication of potential health 
risks are a necessity. Although not mandated by policy in Australia, Quantitative Microbial Risk Assessment 
(QMRA) is recommended in the Australian Guidelines for Water Recycling (AGWR) as a methodology for 
estimating the potential levels of health risk associated with exposures to microbial pathogens. With the rapid 
uptake of QMRA modelling in the water sector in Australia, it is necessary to explore the sensitivity of QMRA 
models to underlying assumptions.   

This stochastic modelling study investigated the impacts of uncertainty in key input parameters underpinning 
QMRA and evaluated the sensitivity of a QMRA model to a range of underlying assumptions. This was 
conducted using the @Risk software program within the Palisade Decision Suite and operational monitoring 
data from a pond-based, Waste Water Treatment Plant (WWTP) in regional New South Wales, Australia.  

This study was conducted in two phases. The first addressed two research questions regarding: 1: The impact 
of assumed sampling regimes (weekly, fortnightly or monthly), and 2: The impact of seasonal variability in 
characterising pond performance as measured by Log Reduction Values (LRVs). The fortnightly and monthly 
datasets were compiled from the weekly monitoring data collected from both the inlet and outlet of the 3 
maturation-pond system within the overall treatment system. The weekly data were also stratified by season 
for investigation of potential seasonal patterns. The distributions of these LRVs were generated through Monte 
Carlo simulations and impacts of temporal variation investigated statistically. The second phase focused on 
estimating potential health risks associated with the hypothetical scenario of irrigating lettuce with pond 
effluent using QMRA. The results from the first phase were used as input data in the QMRA stochastic 
modelling. The QMRA incorporated the four steps: hazard identification, dose-response, exposure assessment 
and risk characterisation. Monte Carlo simulation was used to generate a probabilistic distribution of health 
risk estimates, and the built-in sensitivity analysis functions in @Risk were used to rank the input parameters 
by their effect on the estimated risk levels. 

The results from the first phase revealed no significant difference between how weekly, fortnightly or monthly 
datasets characterised the microbial water quality from the maturation pond system in terms of LRVs. This 
suggests that the frequency of monitoring at the WWTP could be reduced without compromising the 
information value of the dataset. This would, in turn, reduce expenses. Seasonality, however, does appear to 
have a significant impact on pond performance as measured by LRVs. A pair-wise comparison of the weekly 
data by season revealed statistically significant differences between all seasons, except for winter and autumn. 
Summer provided the best performance and spring provided the worst. The results from the health risk 
assessment (second phase) suggested the microbial quality of the pond effluent would not be suitable for the 
proposed reuse scenario of irrigating lettuce eaten raw; however alternative, less risky reuse scenarios would 
be within the scope of the state guidelines. This phase of the research also opened up a broader range of issues 
such as how guidelines are interpreted and how different modelling approaches (e.g., deterministic versus 
stochastic) can yield disparate results. The stochastic methods provide more conservative estimates and 
therefore engender greater assurance in both regulators and the community that safety standards are being met. 
Overall, this research highlights that stochastic modelling is a powerful tool for risk communication and risk 
management for the water industry, the community and regulators.  
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1. INTRODUCTION 

The field of Quantitative Microbial Risk Assessment (QMRA) is relatively young, but is growing (Haas, Rose 
& Gerba, 2014). It is being promoted as a rigorous methodology for modelling the human health risks 
associated with microbial hazards from exposure to water in a variety of contexts, such as for drinking water, 
recreational water and recycled water from storm and waste water. Early attempts to apply the traditional 
chemical health risk assessment paradigm (incorporating the four steps: hazard identification, dose-response, 
exposure assessment and risk characterisation) to microbial hazards faced many challenges; it was hampered 
by insufficient data, and knowledge of how to analyse existing data within each of these steps (enHealth, 2012; 
Haas et al., 2014). In recent years, however, there has been a substantial growth in the knowledge of, and scope 
for, QMRA. Specifically, there has been better identification and enumeration of microorganisms, development 
of dose-response models and assessment of human health effects and greater access to risk modelling software 
platforms. This ongoing expansion of the current knowledge base equips health risk assessors with the capacity 
to demonstrate the value of stochastic modelling to an increasing range of real-world problems.  

In the context of recycled water, the ultimate goal is safe, fit-for-purpose reuse. The comprehensive assessment, 
management and communication of potential health risks are therefore essential, particularly for microbial 
hazards which can result in immediate health threats (NRMMC, 2006; Toze, 2006). To this end, key guidance 
documents are being produced to facilitate its broader uptake, including the Guidelines for Water Reuse (US 
EPA, 2012) and guidelines being developed by the World Health Organisation (WHO) on QMRA. 

Each of the four steps in the QMRA framework (Figure 1.) can be underpinned by either deterministic or 
stochastic analyses. Deterministic approaches utilise point estimates of the model parameters whereas 
stochastic approaches make use of probabilistic distributions in place of point estimates. The latter better 
accounts for the uncertainty and variability that is inherent in the input parameter estimates, such as pathogen 
concentrations, body weight and environmental decay rates of pathogens (Haas et al., 2014; NRMMC, 2006). 
A comprehensive review of the how uncertainty is accounted for within these two approaches can be found in 
Haas et al. (2014). In essence, deterministic approaches have the advantage of being simple to compute and 
the information produced is relatively easy to communicate to stakeholders however they do not directly 
address variability and uncertainty and can convey a false sense of certainty in the computed estimates of risk 
(Haas et al., 2014). Stochastic approaches, on the other hand, are able to describe both uncertain and variable 
inputs mathematically using probabilistic distributions and are more informative and inherently more 
representative than point 
estimates (NRMMC, 2006) 
when applied appropriately. 
They are, however, 
computationally more difficult 
and require supporting 
information that may not be 
readily available (Haas et al., 
2014; NRMMC, 2006).  

Meaningful probabilistic 
distributions can only be 
generated when there are 
adequate data to describe the 
stochastic features of the input 
variables being used to estimate 
risk (Arcella & Leclerq 2004). If 
inadequate data are used, the 
resulting probabilistic 
distributions may be so 
uncertain that it can lead to 
inaccurate conclusions being 
drawn (Cullen & Frey, 1999). 
With regard to computational 
difficulty, this has been 
addressed to some extent 
through the wider accessibility 
to computer software 
programs such as @Risk (Palisade Corporation, 2014) and R (R Development Core Team, 2013). 

Figure 1. Overview of the quantitative microbial risk assessment process 
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Among stochastic approaches to QMRA there are several ways to quantify the uncertainty and variability of 
input parameters. These include likelihood ratio methods, interval methods and Bayesian and Monte Carlo 
methods, with the latter two allowing for an assessment of combined uncertainty from multiple inputs (Haas 
et al., 2014). Monte Carlo simulation is becoming increasingly common in microbial risk assessments, 
particularly those concerned with recycled water reuse (Mok et al., 2014; Hamilton et al., 2006; Westrell et al., 
2004). One of the main impediments to the development and use of QMRA is the lack of complete information 
and data as input to this process.  Identifying knowledge data gaps will facilitate the uptake of this methodology 
and benefit industry, community and regulators.  

2. CASE STUDY SITE DESCRIPTION  

A suitable WWTP with potential for treated wastewater reuse was found in regional New South Wales (NSW), 
Australia. Influent includes a mixture of both domestic and industrial wastewater. The hydraulic retention time 
of these three maturation ponds is approximately 25 days. After maturation pond treatment, the effluent is 
pumped via the effluent transfer pumping station to the storage and reuse farm. 

Recycled water needs a market. Approvals for reuse schemes in NSW are governed by the Environmental 
Guidelines: Use of effluent by irrigation (2004) (Department of Environment and Conservation, 2004). The 
Australian Guidelines for Water Recycling (AGWR) (NRMMC, 2006) are also used to inform NSW regulatory 
and legislative requirements. With regards to treated wastewater reuse, the NSW Guidelines state that NSW 
Health should be consulted in regard to the level of treatment of effluent to be achieved when public health 
could be at risk through contact with irrigated effluent or products that have been produced with irrigated 
effluent (Department of Environment and Conservation, 2004). 

3. METHODS 

3.1. Treatment of raw data: Approximately three years of monitoring data were available from the case 
study WWTP. The raw data acquired included (roughly) weekly sampling for thermotolerant coliforms (TCs) 
along with fourteen other water quality parameters (e.g. pH, TSS, ammonia) between May 2011 and September 
2014. This study utilised the following raw data from the case study WWTP dataset: sampling date and TC 
concentrations (CFU/100ml) from the Inlet Works (n=175), the inlet of Maturation pond 1 (n=179), the outlet 
of Maturation pond 3 (n=182) and the Farm Dam outlet (n=173). All TC concentrations were measured using 
a single 24 hour composite sample. Censored data in the maturation pond 3 dataset were treated by the 
substitution method whereby data below the limit of reporting (LOR) were substituted with values one half of 
the LOR, e.g., a data point is given a value of 1 for a LOR of <2. While other more sophisticated methods exist, 
this simple method is considered appropriate for microbial data where censored data constitute less than 25% 
of the dataset (NHMRC, 2008). Censored data constituted a significant proportion of the dataset (>25%) in the 
farm dam outlet dataset and therefore a more conservative method of substituting censored data with the LOR 
was used, e.g., a data point was given a value of 2 for a LOR of <2. 

The TC concentration data were converted into pathogenic Escherichia coli (E. coli) concentration data using 
the following conversion: approximately 95% of TCs are E. coli (Mara & Horan, 2003), and 8% of E. coli are 
pathogenic (D. Rosser, personal communication, 18 October, 2014; Haas, 1999). The percentages of TC’s that 
are E. coli have been reported to be much lower in other studies (between 47-71 %) (Elmund et al., 1999). For 
the purpose of protecting public health, this study utilised the most conservative figure available, which is that 
95% of TC are E. coli. Microorganism populations are known to follow the lognormal distribution in nature 
(McBride, 2009). The pathogenic E. coli concentration data were therefore transformed using the log10 scale 
before being fitted with a normal distribution. 
 
The research proceeded in two phases. The first phase of the research focused specifically on the impact of 
assumed sampling regimes (weekly, fortnightly or monthly) and seasonal variability in characterising pond 
performance as measured by effluent concentrations and LRVs. The second phase focused on estimating 
potential health risks associated with the hypothetical scenario of irrigating lettuce with treated wastewater 
using QMRA using the results from the first phase of the research as input. 

3.2. Phase 1: The specific research questions developed for this initial phase were as follows: 

1. What impact does sampling design have on characterising maturation pond performance, as measured by 
pathogen log reduction values?  

2. To what extent does the treatment efficacy of maturation ponds vary between seasons, with regard to 
pathogen log reduction values?  
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The following steps were undertaken to explore the impact of different sampling designs and seasonal 
variability in turn 

1. Normal distributions were fitted using @Risk (v 6.3.1; Palisade Corporation)  
2. Distributions of LRV’s were generated by subtracting outlet distributions from inlet distributions and 

running Monte Carlo simulations.  
3. Analysis of variance (ANOVA) was then conducted to test whether any of the mean LRVs were 

significantly different. Tukey’s Honestly Significant Difference (HSD) multiple comparison of means post-
hoc tests were then performed where applicable 

3.3. Phase 2: The following steps were used to model estimated levels of health risk 

Exposure assessment: The model input parameters were used in conjunction with the recommended equation 
(Equation 1) to calculate the daily dose of pathogenic E. coli as a result of consuming the irrigated lettuce. 
 	λ௞ = 	M୧Mୠ୭ୢ୷c୧୵V୮୰୭ୢ݁(ି௞௧)    (1) 

where:  
λk = E. coli dose ingested/person/day (CFU.mL-1) 
Mi = daily consumption per person per kg of body mass [g (kg/person/day)−1]; 
Mbody = human body mass (kg); 
ciw = concentration of pathogenic E. coli  in the irrigation water (CFU mL−1); 
Vprod = volume of irrigation water caught by product (mL g−1); 
k = E. coli 0157:H7 kinetic decay constant (day−1); and 
t = time between last reclaimed-water irrigation event and harvest/consumption/storage (i.e., length of 
environmental exposure) (days). 

Dose-response modelling: Dose-response modelling was performed using a ‘piece-wise’ dose-response 
approximation of the Beta Poisson model (Equations 2 and 3). 
 ூܲ 	(݀) = 1 −	ቀ1 + ௗଵ.ଶ଼ଵቁି଴.଴଺଺ଽଽ  for ݀ ≤ 7;    (2) 

 

ூܲ 	(݀) = 1 −	ቀ1 + ௗ଴.଺ଵଵଶቁି଴.଴ହ଴ଶ  for ݀ > 7,   (3) 

where:  ௜ܲ 	(݀) = the probability of infection given a specific dose; 
Note: d did not exceed 7 for the given scenario therefore only Equation 2 was needed 

Risk Characterisation: The probability of infection per person per year (pppy) was calculated (Equation 4) 
 ௔ܲ௡௡௨௔௟ = 1 − (1 − ௜ܲ(݀))௡     (4) 

 

Where:  ௔ܲ௡௡௨௔௟ = the probability of infection pppy; ௜ܲ(݀) = the probability of infection from a single exposure; ݀ = the mean dose level; ݊ = the frequency of consumption per year (WHO, 2006). 

Monte Carlo simulation was used to generate probabilistic distributions for each of the steps above (10, 000 
iterations per simulation). Mean, median and 95th percentile values of the health risk estimates were calculated. 
The built-in sensitivity analysis function in @Risk was used to rank the input parameters by their effect on the 
estimated health risk levels (i.e., the probability of infection pppy). 
 

Table 1. QMRA model parameters for estimating health risks associated with the consumption of lettuce 
irrigated with treated wastewater. 

Model Parameter Units Distribution type (parameter) [mean] References 

Mbody = Body mass  Kg-person Lognormal (78, 13.5) [78.00]  (enHealth, 2012; Hamilton et 
al., 2006) 
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Model Parameter Units Distribution type (parameter) [mean] References 

Mi = Daily 
Consumption  

g/kg/c/d Lognormal (0.3994, 1.429) [0.40] (AusVeg, 2011; Mok et al., 
2014) 

Ciw = Concentration of 
pathogenic E. coli in 
recycled wastewater  

CFU.mL-1 Lognormal (normal fitted to log10 transformed 
data)  

Summer: RiskNormal (0.64352, 0.41912) 

Spring: RiskNormal (-0.4752,0.7927) 

Estimated from empirical 
Thermotolerant coliform data  

Vprod = Volume of 
irrigation water caught 
by lettuce 

mL. g -1 Lognormal3 (0.01049, 0.00559, 0.006) [1.05 x 
10-2] 

(Mok & Hamilton, 2014) 

k = In-field E. coli decay 
constant  

Day -1 Uniform (0.22, 2.61)  (Sjolander, 2012) 

t = time between last 
irrigation event and 
consumption 

Days Uniform (0,2) [1.00]  (Mok et al., 2014)  

E. coli dose-response 
parameters 

Pi (λ) α = 0.06699, β = 1.281 

(as d≤ 7) 

 

4. RESULTS 

Distributions of LRVs modelled for datasets representing weekly, fortnightly and monthly sampling are 
presented in Figure 2. There were no statistically significant differences between any of the means of these 
distributions (ANOVA, F2,281=0.152, p=0.858). The high p-value (>>0.05) implied  insufficient evidence to 
reject the null hypothesis that all mean pathogen LRVs estimated by different data subsets were equal, and 
therefore the null hypothesis was accepted and no post-hoc tests were conducted. 
 
Clear seasonal differences in pathogenic E. coli concentrations between the influent and effluent can be seen 
in Figure 3. ANOVA results revealed statistically significant differences (F3,162=23.32, p<0.001) and pair-wise 
post-hoc comparisons of the seasonal means showed significant differences between all pairs (p<0.05) except 
for winter and autumn (p=0.996).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Comparison of estimated pathogen log reduction value distributions based on 
weekly, fortnightly and monthly sampling of maturation ponds. 
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Based on the distributions of the 
estimated probabilities of infection pppy, 
summer and spring represented the best 
and worst case scenarios respectively. 
The 95th percentile value for the summer 
probability of infection pppy was 0.06; 
much lower than the corresponding value 
for spring (0.31 infections pppy).  

The tornado graphs shown in Figures 4 
and 5 illustrate the differential sensitivity 
of the seasonal models predicting 95th 
percentile probabilities of infection pppy 
to the input parameters. There are two key 
differences. First, the spring model 
showed greater sensitivity to all input 
parameters compared with the summer 
model. Second, the summer model was 
most sensitive to variations in estimates of 
effluent pathogen concentrations while 
the spring model was most sensitive to 
estimates of daily consumption of lettuce.  

Figure 4. Model sensitivity to the input parameters 
for summer (predicting 95th percentile probability 

of infection per person per year). 

Figure 5. Model sensitivity to the input parameters for 
spring (predicting 95th percentile probability of 

infection per person per year). 

5. DISCUSSION AND CONCLUSION  

Treated wastewater is a potential resource, especially in areas such as regional and remote Australia where 
water scarcity is becoming an increasing challenge. WSPs provide a treatment option that is suitable for 
regional and remote areas due to their low cost and low maintenance despite their large land requirements. 
Treated wastewater from WSPs, however, cannot be reused until issues such as health risks have been 
considered adequately. Pathogens are of primary interest with respect to assessing the health risks of recycled 
water. It is known that microbial concentrations are highly variable both temporally and spatially in wastewater, 
yet the lack of attention to this variability and its impact on the characterisation of microbial water quality is a 
source of frustration to regulators evaluating QMRAs (D. Cunliffe, personal communication, October 29, 
2014). 

This study showed distinct benefits of stochastic modelling (through Monte Carlo simulation) for those 
involved in managing wastewater treated through maturation pond systems and its reuse. Essentially, these 
benefits can be grouped under two broad categories: those that ensue from being able to characterise the 

Figure 3. Seasonal variability of pathogenic E. coli 
concentrations in the case study maturation pond system. 
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temporal variability of the microbial water quality and those related to more transparent health risk modelling 
in relation to treated effluent reuse.   

1. Allows WWTP operators to explore the extent to which monitoring programs can be rationalised 
without compromising their rigour (with respect to characterising microbial water quality) while still 
meeting legislative requirements. For example, it may be of strategic value to reduce the frequency of 
sampling during those seasons when variability is low to enable more intensive sampling, perhaps 
with replicates, during those periods exhibiting higher variability. 

2. Extends the exploration of the impact of observed temporal variability of microbial water quality to 
estimations of health risks, ensuring more rigour.  

3. It is useful for exploring the sensitivity of health risk estimates to all parameters utilised in the QMRA 
thereby providing guidance as to where resources should be focused.   

4. The simulation capacity in @Risk facilitates a range of “what if” scenarios of interest to be explored 
(e.g., different combinations of pathogens, reuse options and target populations)  

5. The graphical outputs from modelling platforms such as @Risk facilitate more effective 
communication with stakeholders. For example, the tornado graphs clearly illustrate the parameters 
that have the most impact on the health risk estimates.  

In summary, this study has shown that stochastic modelling and simulation enhances the investigative capacity 
of those involved in evaluating the performance of highly variable ecological systems such as maturation 
ponds. The same modelling techniques could also be applied to evaluate a broader range of exposure scenarios 
than the single scenario of irrigating lettuce considered here, as well as additional onsite treatment steps which 
may be needed to facilitate desired reuse options. Through explicating sources and implications of uncertainty 
and variability in this type of health risk modelling, this study cautions against relying too much on QMRA 
results where uncertainties have not been made explicit. 
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