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There is a projected positive trend for �����•  of around 1.7 ûC for RCP4.5 and 3.0 ûC for RCP8.5 by 2100 
compared to 1961-2000 (Fig. 4f). The increase for �����•  is lower than that in �����•, increasing by about 1.2 ûC 
for RCP4.5 and 2.3 ûC for RCP8.5 (Fig. 4g). In contrast, cold days �:�����s�r�’�; and cold nights�:�����s�r�’�; are 
projected to decrease in the future. The magnitude of the decrease by the end of 21st century is 62.4% for 
RCP4.5 and 79.7% for RCP8.5 
(Fig. 4h). It can be seen that 
�����s�r�’  is also projected to 
decline, by 72.2% for RCP4.5 
and 89.1% for RCP8.5 (Fig. 4i). 
As shown in Fig. 4j, the temporal 
evolution of �	��  shows a 
consistent drop under two 
scenarios in the 21st century 
with around 52.6% for RCP4.5 
and 73.0% for RCP8.5 
compared to the baseline period.  

3.2.3 Extreme temperature 
range (�ó���� ) 

The time series of ������  shows a 
consistent increase but with 
large fluctuations and a small 
difference between the two 
scenarios in the 21st century 
(Fig. 4k). The amount of ������  
increase in the future is small, 
increasing by approximately 1.5 
ûC for RCP4.5 and 2.2 ûC for 
RCP8.5 compared to the 1961-
2000.  

4. DISCUSSION AND 
CONCLUSION 

The trends of some extreme 
temperature indices in the 
downscaled data for some individual GCMs were opposite to observed values (Table 2), which is possibly 
linked to temporal downscaling procedure and/or unforced variability. Like many other statistical downscaling 
methods, this method relies on empirical relationships between observational and GCM simulated data (Liu 
and Zuo, 2012). Although WGEN parameters derived from observations are improved in this method, extreme 
events may not be realistically represented in the output. Each GCM simulated extreme climate indices still 
had larger differences with the observations (Fig. 2). This may be enhanced by improving the WGEN 
parameters with fine scale outputs of dynamically downscaled results, rather than using coarse scale GCM data, 
in combination with historical records. However, considering the simulation of extreme climate we do not yet 
expect each downscaled model to accurately reproduce observed absolute quantities or rates of change because 
of large interannual variability. The outcome of a forecast can be improved by combining results from multiple 
models, which is based on the fundamental assumption that errors tend to be cancelled if the models are 
independent. 

In the NSW wheat belt, wheat crops are projected to experience more severe heat stress but decreases in frost 
risk in in the eastern part of the NSW wheat belt. Grain growers try to choose suitable varieties and sow after 
the autumn break, which can allow flowering to occur during the period with minimum stress of frost and heat. 
However, as frost days are projected to decrease in frequency and hot days are projected to increase, this will 
lead 

 

Fig. 3. Changes in multi-model ensemble (independence weighted mean, 
IWM) simulated extreme temperature indices during the period 2061-2100 

compared to 1961-2000 under RCP8.5. 
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to a shift of the low-risk flowering window compared to current climate. As a consequence, grain growers need to 
choose suitable varieties and sow after autumn break, which can allow flowering to occur during the period with 
minimum stress of frost and heat. 

Estimates of future changes in temperature extremes are essential information for stakeholders and policymakers. 

Although this analysis 
contributes to this effort, 
there are many uncertain 
factors when assessing 
changes in extreme indices 
at the regional scale. More 
work on generating 
projections from more 
advanced, higher resolution 
GCMs with advanced multi-
model ensemble methods, as 
well as analysing 
uncertainties related to 
model structure and internal 
parameters and improving 
downscaling and bias 
correction techniques, are 
needed for a better 
understanding of the future 
extreme changes over NSW 
wheat belt. 
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Fig. 4. Time series (1900-2100) of multi-model ensemble (independence 
weighted mean, IWM) projected each extreme temperature index under RCP4.5 
and RCP8.5 averaged across the NSW wheat belt. The top and bottom bounds 
of shaded area are the 90th and 10th percentile of the annual value from the 13 

GCMs simulations. 
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