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Abstract:  This paper evaluates the performance of multivariate conditional volatility models in forecasting 
Value-at-Risk (VaR). The paper considers the Constant Conditional Correlation (CCC) model of Bollerslev 
(1990), and models that allow dynamic conditional correlation such as the Dynamic Conditional Correlation 
(DCC) model of Engle (2002) and the Time-Varying Conditional Correlation (TVC) model of Tse and Tsui 
(2002). While the underlying assumptions vary between these models, their common objective is to model 
volatility for multiple assets by capturing their possible interactions. Thus, they provide more information about 
the underlying assets that could not be recovered by univariate models. However, the practical usefulness of 
these models are limited by their complexity as the number of asset increases. The paper aims to examine this 
trade-off between simplicity and extra information by applying these models to forecast VaR for a portfolio of 
the Australian dollar with twelve other currencies. This provides some insight into the practical usefulness of 
the additional information for purposes of risk management. 
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1. INTRODUCTION 

Modelling volatility in financial time series has been an important research area in the past decades. The family 
of Autoregressive Conditional Heteroskedasticity (ARCH) model was first introduced by Engle (1982) who 
laid the foundation for a new approach to describe and forecast conditional variance for financial time series. 
Subsequently, numerous variants and extensions of ARCH models have been proposed. See for examples, the 
Generalized ARCH (GARCH) model of Bollerslev (1986) and its asymmetric extension by Glosten, 
Jagannathan, and Runkle (1993).  

In many financial applications, conditional covariance and correlations play a direct and important role in 
volatility forecasting. A bank is very likely to trade with large and complex portfolios daily. It is unlikely that 
the asset returns in a portfolio would move independently of each other. Therefore, understanding their 
correlation structures is essential in deriving sensible investment strategies to maximize returns while 
minimizing risk. Most of the existing univariate volatility models focus on the dynamics of a single time series 
and they do not provide any information on the potential dependency between asset returns within a portfolio. 
It is worth noting that the correlation between asset returns may be driven by individual heterogeneity as well 
as any potential common factors. This implies that the correlation structures may be time-varying. For example, 
the correlation between Standard & Poor's 500 (S&P 500) and Nikkei 225 is likely to be different before and 
after the Global Financial Crisis (GFC). The correlation before the crisis may be driven by normal market 
condition whereas the GFC forms a single factor that caused significant changes in the correlation between the 
two indices.  

To capture the conditional covariance and correlations for the different type of assets in a portfolio, many 
researchers expanded the univariate to multivariate volatility models. McAleer (2005) pointed out that one 
important aspect in modelling financial volatility is to study multivariate extensions of the conditional volatility 
models. Bollerslev, Engle, and Wooldridge (1988) proposed the diagonal vector ARCH (DVEC) model that is 
a direct extension of the univariate Generalized ARCH (GARCH) model to multivariate model. Other 
alternative approaches for achieving more parsimonious and empirically tractable multivariate volatility 
models are the Constant Conditional Correlation (CCC) model of Bollerslev (1990); Baba, Engle, Kraft and 
Kroner (BEKK) model described by Engle and Kroner (1995); the Dynamic Conditional Correlation (DCC) 
model of Engle (2002); the Time-Varying Correlation (TVC) model of Tse and Tsui (2002); the Vector 
ARMA-GARCH (VARMA-GARCH) model of Ling and McAleer (2003); and the VARMA-asymmetric 
GARCH (VARMA-AGARCH) model of McAleer, Hoti, and Chan (2009). However, the practical usefulness 
of these models can be affected by ‘the curse of dimensionality’ (see Caporin and McAleer 2014). That is, the 
number of parameters increases dramatically in these models as the number of asset increases. 

There are a huge number of studies that estimate VaR forecasts using multivariate GARCH models. Hsu Ku 
and Wang (2008) examined the performance of multivariate GARCH models, namely the CCC, DCC and 
BEKK models, in terms of VaR violations on a portfolio of foreign exchange rates. The DCC model is 
considered to be the best model that offers a better forecasting performance among the other two models in 
estimating VaR. da Veiga, Chan, and McAleer (2011) used both CCC and DCC models on the portfolios of 
Chinese A and Chinese B stock returns. On one hand, DCC model provides a lower number of violations than 
the CCC model. On the other hand, CCC model tends to generate a lower amount of daily capital charges than 
the DCC model. Consequently, they showed that a more severe penalty structure is probably desirable to 
discourage banks from choosing forecasting models that underestimate VaR. In particular, they proposed a 
new penalty structure that is based on the magnitude of violations instead of the current penalty structure that 
is based on the number of violations. An appropriate penalty structure may encourage banks to improve their 
risk models in forecasting VaR more precisely. While, Bauwens and Laurent (2005) proposed a multivariate 
skewed-t distribution for multivariate GARCH models on the portfolios of the US stock returns and foreign 
exchange rates. They found that the multivariate GARCH models under multivariate skewed-t distribution 
improves the performance of VaR forecasts. Nevertheless, these studies showed that accommodating time-
varying conditional correlations improves the forecasting performance of VaR. 

This paper is outlined as follows. The structural properties of the CCC and DCC models and the market risk 
capital requirements by the Basel Accord are provided in Section 2. Section 3 describes the data and discusses 
the empirical results for the performance of VaR forecasts. Section 4 concludes the paper. 

2. CONDITIONAL VOLATILITY MODELS AND VAR FORECASTS 

Consider the following model:   
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Where θ   denotes the parameters to be estimated in the conditional log-likelihood function. tΩ  denotes the 

determinant of tΩ  . See McAleer (2005) and McAleer et al. (2008) for more technical discussions on this class 

of models, including the sufficient conditions for the existence of moments and the sufficient conditions for 
consistency and asymptotic normality of QMLE. 

Following equation (1), the VaR forecast at 0.01α =  for asset i  at time 1t +  can be obtained as: 

, 1 , 1, 1 ,
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t i t
r +E  is the forecast of the asset i ’s return based on the information at time t , ,dqα  is the critical 

value based on the significant level of VaR and the distribution of tη . Although tη  is typically assumed to be 

normally distributed, a student-t distribution with δ  degrees of freedom can be used an alternative.  , 1
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i t
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the estimated standard deviation of , 1
( )

t i t
r

+
E  with m  denotes the model used. Noted that the superscripts “std” 

and “norm” denotes estimates assuming a normal distributed return and a t-distributed return. 

The current regulatory framework requires banks that use their own internal risk models to calculate the VaR 
on a daily basis at 99 percent confidence level. Backtesting procedures have been used to evaluate the 
performance of VaR models. As such, the market risk capital requirements are determined as follows (Basel 
Committee on Banking Supervision 2011): 
1. A bank must backtest its internal VaR models over the previous 250 trading days. 
2. To monitor the frequency of violations, the number of times that the actual losses exceed VaR forecasts 

are calculated. Subsequently, the percentage of violations can also be calculated. A good model will have 
a percentage of violation that is very close to one percent and should lead to correct estimation of market 
risk at every point in time. A VaR model that overestimates market risk will lead to insufficient violations 
and requires a large amount of capital. On the other hand, a VaR model that underestimates market risk 
will be penalized by the regulator due to excessive violations. 
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3. The market risk capital charge (MRCC) is set either at the lower VaR of the previous day or the average 
VaR of the previous 60 days trading days, multiplied by a scaling factor of (3+k). The scaling factor 
calculates the probability that a violation occurs for a given day over the previous 250 trading days. It can 
be written as: 
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t t t t
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Some statistical tests are also carried out to validate VaR forecasts. These tests include Kupiec (1995) Test 
Until the First Failure (TUFF), followed by Christoffersen (1998) and Christoffersen, Hahn, and Inoue (2001) 
Unconditional Coverage (UC), Serial Independence (IND) and Conditional Coverage (CC) tests. See da Veiga, 
Chan, and McAleer (2011) for further discussion on these stastical tests. 

3. RESULTS 

A dataset of daily exchange rates on Australian dollar (AUD) with twelve other currencies is used. The 
exchange rates are US Dollar (USD), Japanese Yen (JPY), Pound Sterling (GBP), New Zealand Dollar (NZD), 
Korean Won (KRW), Singapore Dollar (SGD), Swiss Franc (CHF), Chinese Renminbi (CNY), Hong Kong 
Dollar (HKD), Indian Rupee (IDR), Malaysian Ringgit (MYR), and New Taiwan Dollar (TWD). These 
exchange rates are collected from Thomson Reuters DataStream Professional, for the period of 2 January 1984 
to 31 December 2013. Using the data above, an equally-weighted portfolio of twelve assets is constructed. The 
sample size used for estimation is from 2 January 1984 to 31 December 2002 with 4,950 observations and the 
forecasting period is from 2 January 2003 to 31 December 2013 with 2,871 observations. The means of the 
portfolio returns for both estimation and forecast periods are close to zero. The skewness of the portfolio returns 
for both estimation and forecast periods are negative. While, the portfolio returns display high kurtosis and fat-
tailed. 

There are four sets of VaR forecasts estimated from the CCC-GARCH(1,1), CCC-GJR(1,1), DCC-
GARCH(1,1) and DCC-GJR(1,1) models for normal distribution. The degrees of freedom set by t-density are 
estimated from the standardized residuals that follow GARCH(1,1) and GJR(1,1) processes utilized under 
normal and student-t distributions. This gives eight critical values that leads to eight sets of VaR forecasts. A 
total 12 sets of VaR forecasts are presented for comparison purposes. All VaR forecasts are constructed at 1% 
level. The parameter estimates in the CCC-GARCH(1,1), CCC-GJR(1,1), DCC-GARCH(1,1) and DCC-
GJR(1,1) models are statistically significant for all currencies. As the second moment condition is satisfied, 
the log-moment condition is necessarily satisfied, so the QMLE is consistent and asymptotically normal.  

Table 1. VaR Forecasts at 1% level 

Model Mean Median Minimum Maximum 
Standard 
Deviation 

C C C G A R C H N

normV aR
−

 -1.2943 (1) -1.1560 -5.6650 -0.7386 0.5336 
C C C G J R N

n o rmV a R
−

 -1.2956 (1) -1.1520 -5.6090 -0.7479 0.5386 
C C C G A R C H N

s tdV a R
−

 -1.5071 (2) -1.3460 -6.5960 -0.8601 0.6214 
C C C G J R N

s tdV a R
−

 -1.5072 (2) -1.3400 -6.5250 -0.8700 0.6265 
C C C G A R C H t

s tdV a R
−

 -1.5199 (3) -1.3560 -6.5840 -0.8696 0.6287 
C C C G J R t

s t dV a R
−

 -1.5179 (3) -1.3500 -6.4680 -0.8738 0.6326 
D C C G A R C H N

normV aR
−

 -1.3336 (1) -1.1860 -6.3490 -0.7172 0.5896 
D C C G JR N

n o rmV a R
−

 -1.3353 (1) -1.1800 -6.2380 -0.7264 0.5952 
D C C G A R C H N

s tdV a R
−

 -1.5148 (2) -1.3470 -7.2110 -0.8146 0.6697 
D C C G JR N

stdV a R
−

 -1.5166 (2) -1.3400 -7.0850 -0.8250 0.6761 
D C C G A R C H t

s tdV a R
−

 -1.6029 (3) -1.4300 -7.4590 -0.7922 0.7249 
D C C G J R t

s tdV a R
−

 -1.6001 (3) -1.4200 -7.2630 -0.8075 0.7288 
(1) VaR forecasts are estimated from equation (6) based on a normal distribution 

1046



Sia and Chan, Can Multivariate GARCH Models Really Improve Value-at-Risk Forecasts? 

(2) VaR forecasts are estimated from equation (6) based on a normal distribution at the degrees of freedom set by t-density  

(3) VaR forecasts are estimated from equation (6) based on a student-t distribution at the degrees of freedom set by t-density 

Table 1 summarizes the results for the 12 sets of VaR forecasts estimated by the CCC and DCC models. The 
means of VaR forecasts for the CCC and DCC models that utilized under student-t distribution appear to be 
lower than the means of VaR forecasts for the CCC and DCC models under the normal distribution. Hence, 
the student-t distribution provides more conservative VaR forecasts than a normal distribution. It can also be 
seen that the means of VaR forecasts estimated by the DCC models are mostly lower than the means of VaR 
forecasts estimated by the CCC models. In particular, 

D C C G A R C H t

s tdV a R
−

shows the lowest mean of VaR forecasts 

at -1.6029 while 
C C C G A R C H N

normV aR
−

shows the highest mean of VaR forecasts at -1.2943. Hence, VaR forecasts 
estimated by the DCC models are crucial to improve the performance of VaR forecasts. These results also 
justify the use of model such as DCC to capture the time-varying conditional correlation structures in portfolio 
returns. 

Table 2. Number and Percentage of Violations for VaR Forecasts at 1% Level 

Model No. of Violation % of Violation 
C C C G A R C H N

normV aR
−

 71 2.47% 
C C C G J R N

n o rmV a R
−

 69 2.40% 
C C C G A R C H N

s tdV a R
−

 41 1.43% 
C C C G J R N

s tdV a R
−

 39 1.36% 
C C C G A R C H t

s tdV a R
−

 41 1.43% 
C C C G J R t

s t dV a R
−

 40 1.39% 
D C C G A R C H N

normV aR
−

 68 2.37% 
D C C G JR N

n o rmV a R
−

 64 2.23% 
D C C G A R C H N

s tdV a R
−

 41 1.43% 
D C C G JR N

stdV a R
−

 39 1.36% 
D C C G A R C H t

s tdV a R
−

 35 1.22% 
D C C G J R t

s tdV a R
−

 33 1.15% 
Table 2 reports the number and percentage of violations for VaR forecasts. Ideally, a good model would have 
a percentage of violation that is very close to one percent. A model that underestimates market risk gives a 
percentage of violation that is more than one percent. A model that overestimates market risk gives a percentage 
of violation that is less than one percent. High percentages of violations for 

C C C G A R C H N

normV aR
−

 and 
C C C G J R N

n o rmV a R
−

are observed at 2.47% and 2.40%, respectively. Similarly, 
D C C G A R C H N

normV aR
−

 and 
D C C G JR N

n o rmV a R
−

present high 

percentages of violations at 2.37% and 2.23%, respectively. A good model is given by 
D C C G J R t

s tdV a R
−

with a 

percentage of violations at 1.15. The highest percentage of violations is given by 
C C C G A R C H N

normV aR
−

at 2.47%. It 
is worth noting that the DCC models are preferred to the CCC models given that the DCC models provide the 
percentages of VaR violations that are closer to one percent. Also, the VaR violations under student-t 
distribution always give fewer violations than VaR violations under the normal distribution. 

Table 3. Backtesting Results for VaR Forecasts at 1% level 

Model TUFF (1) UC (1) Ind (2) CC (2) 
C C C G A R C H N

normV aR
−

 0.3715 44.6241 12.9469 57.5710 
C C C G J R N

n o rmV a R
−

 0.3715 41.0007 13.7388 54.7394 
C C C G A R C H N

s tdV a R
−

 0.3715 4.6920 5.2691 9.9611 
C C C G J R N

s tdV a R
−

 0.3715 3.3500 2.4869 5.8368 
C C C G A R C H t

s tdV a R
−

 0.3715 4.6920 5.2691 9.9611 
C C C G J R t

s t dV a R
−

 0.3715 3.9956 2.3324 6.3280 
D C C G A R C H N

normV aR
−

 0.3715 39.2333 10.6979 49.9312 
D C C G JR N

n o rmV a R
−

 0.3715 32.4696 8.7800 41.2496 
D C C G A R C H N

s tdV a R
−

 0.3715 4.6920 2.1846 6.8766 
D C C G JR N

stdV a R
−

 0.3715 3.3500 2.4869 5.8368 
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D C C G A R C H t

s tdV a R
−

 0.3715 1.3011 3.1780 4.4791 
D C C G J R t

s tdV a R
−

 0.3715 0.6178 3.5724 4.1901 
(1) The Unconditional Coverage (UC) and Time Until First Failure (TUFF) tests are asymptotically distributed as χ2 (1). 
(2) The Serial Independence (Ind) and Conditional Coverage (CC) tests are asymptotically distributed as χ2 (2). 
(3) Entries in bold denote rejection of the tests. 

The results from TUFF, UC, Ind and CC tests are given in Table 3. The TUFF results for all models lead to 
correct acceptance of the test at a constant value of 0.3715. It can be seen that both CCC and DCC models 
utilized under a normal distribution, fail UC, Ind and CC tests. This suggests that the VaR violations performed 
by these models are serially dependent. On the other hand,

C C C G J R N

s tdV a R
−

,
D C C G JR N

stdV a R
−

, 
D C C G A R C H t

s tdV a R
−

, and 
D C C G J R t

s tdV a R
−

pass UC, Ind and CC tests. This shows that the VaR violations are likely to be independent and 
that a VaR violation today should not provide any information about whether or not a VaR violation will occur 
tomorrow. While,

C C C G A R C H N

normV aR
−

, , 
C C C G A R C H t

s tdV a R
−

,
C C C G J R t

s t dV a R
−

, and 
D C C G A R C H N

s tdV a R
−

 , fail the UC and 
CC tests but pass Ind test.  

Table 4. Market Risk Capital Charges 

Model Mean Median Minimum Maximum 
Standard 
Deviation 

C C C G A R C H N

normV aR
−

 -4.79 -4.06 -22.66 -2.44 2.5215 
C C C G J R N

n o rmV a R
−

 -4.77 -4.01 -22.43 -2.46 2.5406 
C C C G A R C H N

s tdV a R
−

 -5.18 -4.38 -24.74 -2.84 2.6551 
C C C G J R N

s tdV a R
−

 -5.12 -4.36 -23.82 -2.86 2.5406 
C C C G A R C H t

s tdV a R
−

 -5.22 -4.41 -24.61 -2.84 2.6874 
C C C G J R t

s t dV a R
−

 -5.19 -4.38 -24.26 -2.88 2.6821 
D C C G A R C H N

normV aR
−

 -4.87 -4.05 -25.39 -2.39 2.7387 
D C C G JR N

n o rmV a R
−

 -4.81 -4.01 -24.02 -2.40 2.6061 
D C C G A R C H N

s tdV a R
−

 -5.19 -4.45 -26.32 -2.71 2.6897 
D C C G JR N

stdV a R
−

 -5.15 -4.34 -25.86 -2.73 2.7088 
D C C G A R C H t

s tdV a R
−

 -5.41 -4.63 -26.10 -2.78 2.7875 
D C C G J R t

s tdV a R
−

 -5.31 -4.59 -24.69 -2.81 2.5191 
Table 4 shows the market risk capital charges from equations (4) and (12). Berkowitz and O'Brien (2002) and 
Pérignon, Deng, and Wang (2008) showed that banks tend to report high VaR forecasts that lead to an excessive 
amount of capital charges. In any case, there is an opportunity cost of misestimating VaR. Hence, pursuing a 
correct VaR model that can lead to the precision of determining minimum capital charges is crucial for banks 
and the regulator. In this case, 

D C C G A R C H t

s tdV a R
−

provides the lowest mean of market risk capital charges at -5.41. 

While, the lowest capital charge is given by 
D C C G A R C H N

s tdV a R
−

at -26.32. This is mostly expected due to the 
extreme negative returns during the GFC of 2008 where higher amount of capital charges are imposed to protect 
banks to cover from the worst possible trading losses. On the other hand, the highest capital charge is presented 
by 

D C C G A R C H N

normV aR
−

at – 2.39, followed by 
D C C G JR N

n o rmV a R
−

 at -2.40. This generally occur during periods of low 
volatility in the foreign exchange market. 

4. CONCLUSION 

This paper emphasizes the importance of accommodating time-varying conditional correlations in forecasting 
VaR. These findings are crucial for banks and the regulator since a correct VaR model leads to increase 
efficiency in measuring market risk, hence leading to determine minimum capital requirements. In this paper, 
two multivariate volatility models, namely CCC and DCC models, are considered to forecast VaR. The results 
show that a student-t distribution gives more robust estimation of VaR forecasts than a normal distribution, 
given that the foreign exchange returns exhibit heavy tails. The results also find that the DCC models provide 
more conservative VaR forecasts than CCC models with the DCC models have lower numbers and percentages 
of VaR violations. Consequently, it is reasonable to suggest that time-varying conditional correlations cannot 
be ignored in forecasting VaR. Also, CCC models deliver a higher amount of capital charges compared to the 
DCC models. These results are consistent with the empirical findings by da Veiga, Chan, and McAleer (2011). 
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Incorporating multivariate volatility in VaR models is not straightforward where there are many other factors 
to be considered. These models raise some difficulties in practice, where banks trade with relatively large and 
complex portfolios that are unlikely to change daily. This implies that each day, the banks would have to 
compute a series of historical data for the new portfolios to estimate VaR. This may create additional costs to 
the banks. Instead of using these models, banks appear to be taking less computationally demanding 
alternatives. Banks prefer to use a simple VaR model that aggregates all of the risks of a portfolio into a single 
number, which is suitable for use in the boardroom, reporting to the regulator and disclosure in their financial 
reports. Nonetheless, multivariate volatility models play a significant role in the study of VaR as they are very 
useful to measure and manage market risk. 
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