
A State-Space Estimation of the Lee-Carter Mortality
Model and Implications for Annuity Pricing

M. C. Fung a, G. W. Peters b and P. V. Shevchenko c

aRisk Analytics Group, Digital Productivity Flagship, CSIRO, Australia
bDepartment of Statistical Science, University College London, United Kingdom

Associate Fellow of Oxford Mann Institute, Oxford University
Associate Fellow of Systemic Risk Center, London School of Economics.
cRisk Analytics Group, Digital Productivity Flagship, CSIRO, Australia

3 August 2015
Email: Simon.Fung@csiro.au

Abstract: A common feature of retirement income products is that their payouts depend on the lifetime of
policyholders. A typical example is a life annuity policy which promises to provide benefits regularly as long
as the retiree is alive. Consequently, insurers have to rely on “best estimate” life tables, which consist of
age-specific mortality rates, in order to price these kind of products properly. Recently there is a growing
concern about the accuracy of the estimation of mortality rates since it has been historically observed that
life expectancy is often underestimated in the past (so-called longevity risk), thus resulting in longer benefit
payments than insurers have originally anticipated. To take into account the stochastic nature of the evolution
of mortality rates, Lee and Carter (1992) proposed a stochastic mortality model which primarily aims to
forecast age-specific mortality rates more accurately.

The original approach to estimating the Lee-Carter model is via a singular value decomposition, which falls
into the least squares framework. Researchers then point out that the Lee-Carter model can be treated as a
state-space model. As a result several well-established state-space modeling techniques can be applied to
not just perform estimation of the model, but to also perform forecasting as well as smoothing. Research in
this area is still not yet fully explored in the actuarial literature, however. Existing relevant literature focuses
mainly on mortality forecasting or pricing of longevity derivatives, while the full implications and methods of
using the state-space representation of the Lee-Carter model in pricing retirement income products is yet to be
examined.

The main contribution of this article is twofold. First, we provide a rigorous and detailed derivation of the
posterior distributions of the parameters and the latent process of the Lee-Carter model via Gibbs sampling.
Our assumption for priors is slightly more general than the current literature in this area. Moreover, we
suggest a new form of identification constraint not yet utilised in the actuarial literature that proves to be a
more convenient approach for estimating the model under the state-space framework. Second, by exploiting
the posterior distribution of the latent process and parameters, we examine the pricing range of annuities,
taking into account the stochastic nature of the dynamics of the mortality rates. In this way we aim to capture
the impact of longevity risk on the pricing of annuities.

The outcome of our study demonstrates that an annuity price can be more than4% under-valued when different
assumptions are made on determining the survival curve constructed from the distribution of the forecasted
mortality rates. Given that a typical annuity portfolio consists of a large number of policies with maturities
which span decades, we conclude that the impact of longevity risk on the accurate pricing of annuities is a
significant issue to be further researched. In addition, we find that mis-pricing is increasingly more pronounced
for older ages as well as for annuity policies having a longer maturity.
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1 INTRODUCTION

The pricing of retirement income products depends crucially on the accuracy of the predicted death or survival
probabilities. It is now widely documented that survival probability is consistently underestimated especially
in the last few decades. To capture the stochastic nature of mortality trends, Lee and Carter (1992) proposed a
stochastic mortality model to forecast the trend of age-specific mortality rates.

There exists a body of literature on how to estimate the Lee-Carter model. The original approach in Lee and
Carter (1992) is via singular value decomposition. To overcome the unrealistic feature of homogeneity in the
additive error term, Brouhns et al. (2002) recast the model as a Poisson regression model assuming Poisson
random variation for the number of deaths. Estimation of the model in the Poisson regression setting under
the Bayesian framework is carried out in Czado et al. (2005). Also there is a recently developed framework
for modeling death counts with common risk factors via credit risk plus methodology and resultant estimation
of the model via Monte Carlo Markov Chain in Hirz et al. (2015). In this paper we focus principally on
the class of what has become known as the Lee-Carter models, in this regard another approach to estimating
the Lee-Carter model is via state-space representation. Pedroza (2006) shows that the predictive intervals for
forecasting are materially wider than using the singular value decomposition method. Kogure and Kurachi
(2010) adopt the state-space modeling approach and apply it for the pricing of longevity bonds and swaps.

In this paper we aim to explore further the Bayesian state-space modeling approach and examine its implication
for annuity pricing. Specifically, we provide a rigorous and detailed derivation of the posterior distributions
of the static parameters and the latent process of the Lee-Carter model via Gibbs sampling. Our assumptions
on the priors on the Lee-Carter model parameters are more general than Pedroza (2006) and Kogure and
Kurachi (2010). Moreover, a new form of identification constraint not yet recognised in the actuarial literature
is proposed which proves to be more convenient for estimating the model using an MCMC method under the
state-space formulation. Using the predictive distributions of age-specific death rates, we examine the impact
of longevity risk on the pricing of annuities and demonstrate that this long-term risk is indeed a significant
factor when accurate pricing is required.

In Section 2 the state-space Lee-Carter model is presented together with some definitions and notation. Sec-
tion 3 describes the Gibbs sampling approach to estimate the state-space Lee-Carter model. Posterior distri-
butions of the static parameters and the latent process are derived in detail. Section 4 examines the impact of
longevity risk on annuity pricing. Section 5 concludes with some remarks.

2 LEE-CARTER MODEL

2.1 Definitions and Notation

In this section we briefly recall some important definitions from actuarial literature on mortality modelling
that are required to set up the Lee-Carter model below and the pricing analysis in Section 4. LetTx be a
random variable representing the remaining lifetime of a person agedx. The cumulative distribution function
and survival function ofTx are written asτ qx = P (Tx ≤ τ) and τpx = P (Tx > τ) respectively. For a
person agedx, the force of mortality at agex+ τ is defined asµx+τ := limh→0

1
hP (Tx < τ + h|Tx > τ) =

1
τpx

d
dτ τ qx = − d

dτ ln τpx and henceτpx = exp
(

−
∫ τ

0
µx+s ds

)

. The central death rate for ax-year-old, where

x ∈ N, is defined asmx := 1qx∫
1

0 spx ds
=

∫
1

0 spx µx+s ds
∫

1

0 spx ds
which is a weighted-average of the force of mortality.

Under the so-called piecewise constant force of mortality assumption, that isµx+s = µx where0 ≤ s < 1 and
x ∈ N, we havemx = µx and hence1px = e−mx . Moreover, the maximum likelihood estimate of the force
of mortalityµ̂x (and hencêmx) is given byµ̂x = Dx/Ex = m̂x whereDx is the number of deaths recorded at
agex last birthday and the exposure-to-riskEx is the total time lived by people agedx last birthday, during the
observation year (Pitacco et al. (2009)). Note thatEx is often approximated by an estimate of the population
agedx last birthday in the middle of the observation year.

2.2 The Lee-Carter State Space Model

Based on the definitions described above, we now discuss the work of Lee and Carter (1992) who pro-
posed a stochastic mortality model specifically for forecasting age-specific central death ratesmxt, where
x = x1, . . . , xp andt = 1, . . . , n represent age and year (time) respectively. The model assumes that the log
central death rate,yxt = lnmxt, is governed by the following equation

yt = α+ βκt + εt, εt ∼ N(0, σ2
ε1p) (1)
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whereyt = (yx1t, . . . , yxpt)
′, α = (αx1

, . . . , αxp
)′, β = (βx1

, . . . , βxp
)′, εt = (εx1t, . . . , εxpt)

′, 1p is thep
by p identity matrix and N(., .) denotes the Gaussian distribution. Lee and Carter (1992) estimate the model
(1) via singular value decomposition and subsequently assume that the unobserved latent time trend denoted
by κt satisfies the following linear dynamics

κt = κt−1 + θ + ωt, ωt ∼ N(0, σ2
ω) (2)

whereεt andωt are independent. The parametersθ, σ2
ω are then estimated using standard econometric tech-

niques. In this form the Lee-Carter model is, however, not identifiable since the model (1) is invariant up to
some linear transformations of the parameters:yt = α + βκt + εt = α + βc + β

d ((κt − c)d) + εt =

α̃+ β̃κ̃t + εt whereα̃ = α+βc, β̃ = β

d and κ̃t = (κt − c)d. To overcome this identification issue, Lee and
Carter (1992) introduced the constraints

∑xp

x=x1
βx = 1 and

∑n
t=1 κt = 0 to ensure that the model becomes

identifiable since, by settingd =
∑xp

x=x1
βx andc =

∑n
t=1 κt, we have

∑xp

x=x1
β̃x = 1 and

∑n
t=1 κ̃t = 0.

Pedroza (2006) suggests that we can in fact combine the processesyt andκt into one dynamical system

yt = α+ βκt + εt, κt = κt−1 + θ + ωt, whereεt ∼ N(0, σ2
ε1p) andωt ∼ N(0, σ2

ω), (3)

resulting in a state-space representation of the Lee-Carter model and estimateκt and model parameters jointly.

2.3 Lee-Carter model in ARIMA Time Series Form

We also note that, at least when one doesn’t consider the identification constraints, the Lee-Carter model is
a simple linear dynamic model. Hence, we also highlight that this model can be rewritten in the form of an
ARIMA structure via a Local Level formulation where we denoteηt := α + βκt andht := θ + wt. One
can then rewrite the state-space form where each agex is an ARIMA(0,1,1) structure asZxt := ∇Y xt =
∇ηxt +∇ǫxt with a simple closed form expression for the auto-correlation function given by

ρZx
(k) =

γ(k)

γ(0)
=

{

−
σ2
ǫ

σ2
w+2σ2

ǫ
, k = 1,

0, k ≥ 1.
(4)

Suggesting that one can also perform estimation on the unconstrained form of the model via estimation based
on the autocorrelation, though these would need to be modified subject to identification constraints. This
would again complicate the estimation, suggesting the need to try to find alternative identification constraints
that are more applicable to these standard estimation approaches.

3 BAYESIAN INFERENCE FOR LEE-CARTER MODEL IN STATE-SPACE FORM

Pedroza (2006) and Kogure and Kurachi (2010) both consider Bayesian formulations of the Lee-Carter model
which allows the joint estimation ofκt and model parameters. However, under their formulation they again
work with the identification constraints proposed in Lee and Carter (1992) which are not obvious to use when
designing efficient Monte Carlo procedures such as an Markov Chain Monte Carlo (MCMC) procedure. Such
identification constraints will lead to difficulties in designing the proposal of the MCMC and difficulties in
achieving suitable acceptance rates for the resultant Markov chain, resulting in high variance in estimates of
mortality rates. Additionally, although these authors work in the Bayesian setting, their derivations of the
posterior distributions are not fully described. In the following we derive the posterior distributions of the
parameters and the state process of the Lee-Carter model under our extended Bayesian framework.

3.1 New Identification Constraints and Bayesian Formulations

We suggest an alternative new formulation of the identification constraints required which we believe is simpler
and more readily applicable to most Monte Carlo based procedures such as MCMC and filtering methods such
as Kalman Filter and Sequential Monte Carlo. This has the key advantage that for a given computational effort
we can design efficient MCMC samplers with lower variance and therefore result in more reliable estimates
of mortality rate. Our formulation of the identification constraints are given by simply settingαx1

= constant,
andβx1

= constant. Such a choice is a valid identification constraint since if one of the elements of eachα

andβ are known, then a non-trivial linear transformation is not allowed anymore (Section 2.2); that is, we
must havec = 0 andd = 1.

Under the Bayesian approach, we aim to obtain the posterior densityπ(κ0:n,Ψ|y1:n) of the states1 κ0:n

as well as the parameters,Ψ := (αx2:xp
, βx2:xp

, θ, σ2
ε , σ

2
ω), given the observationsy1:n. In this paper we

1Herea1:t meansa1, . . . , at.
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explain an efficient and suitable sampling framework for actuarial applications which utilises the state-space
Lee-Carter structure, in particular the fact that it is a linear Gaussian model, as well as the new constraint
formulation we introduce. Under this model we develop an efficient approach involving a combined Gibbs
sampling conjugate model sampler for the marginal target distributions of the static model parameters along
with a forward backward Kalman filter sampler for the latent processκ1:t.

A sample of the targeted density is obtained via Gibbs sampling in two steps: (1) InitialiseΨ = Ψ
(0); (2) For

i = 1, . . . , N , first drawκ
(i)
0:n from π(κ0:n|Ψ

(i−1),y1:n), then drawΨ(i) from π(Ψ|κ
(i)
0:n,y1:n).

3.2 Sampling from the full conditional densityπ(κ0:n|Ψ,y1:n)

Samples from the full conditional densityπ(κ0:n|Ψ,y1:n) can be obtained via the so-called forward-filtering-
backward sampling (FFBS) procedure (Carter and Kohn (1994)). We can write

π(κ0:n|Ψ,y1:n) =

n
∏

t=0

π(κt|κt+1:n,Ψ,y1:n) =

n
∏

t=0

π(κt|κt+1,Ψ,y1:t) (5)

where the last term in the product,π(κn|Ψ,y1:n), is distributed as N(mn, Cn) in Kalman filtering. We use
the following notation

κt−1|y1:t−1 ∼ N(mt−1, Ct−1) (6)

κt|y1:t−1 ∼ N(at, Rt), where at = mt−1 + θ,Rt = Ct−1 + σ2
ω (7)

yt|y1:t−1 ∼ N(f t,Qt), where f t = α+ βat,Qt = ββ′Rt + σ2
ε1p (8)

κt|y1:t ∼ N(mt, Ct), where mt = at +Rtβ
′Q−1

t (yt − f t), Ct = Rt −Rtβ
′Q−1

t βRt (9)

to denote the distributions involved in Kalman filtering. Once we draw a sampleκn from N(mn, Cn), then
Eq. (5) suggests that we can draw recursively and backwardlyκt from π(κt|κt+1,Ψ,y1:t) wheret = n −
1, n− 2, . . . , 1, 0. It can be shown that (Petris et al. (2009))

π(κt|κt+1,Ψ,y1:t) ∼ N(ht, Ht), where ht = mt+CtR
−1
t+1(κt+1−at+1), Ht = Ct−CtR

−1
t+1Ct. (10)

In summary, the FFBS algorithm consists of three steps: (1) Run Kalman filter to obtainmn andCn; (2) Draw
κn from N(mn, Cn) and (3) Fort = n− 1, . . . , 0, drawκt from N(ht, Ht).

3.3 Sampling from the full conditional desnityπ(Ψ|κ0:n,y1:n)

Sampling from the full conditional densityπ(Ψ|κ0:n,y1:n) can be achieved by applying Gibbs sampling.
The prior for (αx, βx, θ, σ

2
ε , σ

2
ω) are given byαx ∼ N(µ̃α, σ̃

2
α), βx ∼ N(µ̃β , σ̃

2
β), σ

2
ε ∼ IG(ãε, b̃ε), θ ∼

N(µ̃θ, σ̃
2
θ), σ

2
ω ∼ IG(ãω, b̃ω) wherex ∈ {x2, . . . , xp} and IG(., .) denote the inverse-gamma distribution. It

is assumed that the priors for all parameters are independent. In this case the posterior densities of parameters
are of the same type as the prior densities, a so-called conjugate prior. In the following we derive the posterior
distribution for each parameter (for ease of notation it is assumed thaty = y1:n,κ = κ0:n, familyΨ−λ means
“Ψ without the parameterλ”):

• Forαx wherex ∈ {x2, . . . , xp}, we have

π(αx|y,κ,Ψ−αx
) ∝ π(y|κ,Ψ)π(κ|Ψ)π(αx|Ψ−αx

) ∝

n
∏

t=1

π(yxt|κt, αx, βx, σ
2
ε)π(αx)

∝ exp

{

−
1

2

(

(σ̃2
αn+ σ2

ε)α
2
x − 2(µ̃ασ

2
ε + σ̃2

α

∑

t(yxt − βxκt))αx

σ̃2
ασ

2
ε

)}

.

Hence the posterior conditional distribution ofαx is given by N
(

µ̃ασ2
ε+σ̃2

α

∑
t(yxt−βxκt)

σ̃2
αn+σ2

ε
,

σ̃2
ασ2

ε

σ̃2
αn+σ2

ε

)

.

• For βx wherex ∈ {x2, . . . , xp}, we have

π(βx|y,κ,Ψ−βx
) ∝ π(y|Ψ)π(κ|Ψ)π(βx|Ψ−βx

) ∝

n
∏

t=1

π(yxt|κt, αx, βx, σ
2
ε)π(βx)

∝ exp







−
1

2





(σ̃2
β

∑

t κ
2
t + σ2

ε )β
2
x − 2

(

µ̃βσ
2
ε + σ̃2

β

∑

t(yxt − αx)κt

)

βx

σ̃2
βσ

2
ε











.
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Hence the posterior conditional distribution ofβx is given by N
(

σ̃2
β

∑
t
(yxt−αx)κt+µ̃βσ

2
ε

σ̃2
β

∑
t
κ2
t+σ2

ε

,
σ̃2
βσ

2
ε

σ̃2
β

∑
t
κ2
t+σ2

ε

)

.

• For θ, we have

π(θ|y,κ,Ψ−θ) ∝ π(y|κ,Ψ)π(κ|Ψ)π(θ|Ψ−θ) ∝

n
∏

t=1

π(κt|κt−1, θ, σ
2
ω)π(θ)

∝ exp

{

−
1

2

(

(σ̃2
θn+ σ2

ω)θ
2 − 2

(

µ̃θσ
2
ω + σ̃2

θ

∑

t(κt − κt−1)
)

θ

σ̃2
θσ

2
ω

)}

.

Hence the posterior conditional distribution ofθ is given by N
(

σ̃2
θ

∑n
t=1

(κt−κt−1)+µ̃θσ
2
ω

σ̃2
θ
n+σ2

ω
,

σ̃2
θσ

2
ω

σ̃2
θ
n+σ2

ω

)

.

• For σ2
ε , we have

π(σ2
ε |y,κ,Ψ−σ2

ε
) ∝ π(y|κ,Ψ)π(κ|Ψ)π(σ2

ε |Ψ−σ2
ε
) ∝

n
∏

t=1

xp
∏

x=x1

π(yxt|κt, αx, βx, σ
2
ε )π(σ

2
ε )

∝
1

(σ2
ε )

np/2+ãε+1
exp

{

−
1

σ2
ε

(

b̃ε +
1

2

∑

t

∑

x

(yxt − (αx + βxκt))
2

)}

.

The posterior conditional distribution ofσ2
ε is thus IG

(

ãε +
np
2 , b̃ε +

1
2

∑n
t=1

∑xp

x=x1
(yxt − (αx + βxκt))

2
)

.

• Forσ2
ω , we have

π(σ2
ω |y,κ,Ψ) ∝ π(y|κ,Ψ)π(κ|Ψ)π(σ2

ω |Ψ−σ2
ω
) ∝

n
∏

t=1

π(κt|κt−1, θ, σ
2
ω)π(σ

2
ω)

∝
1

(σ2
ω)

n/2+ãω+1
exp

{

−
1

σ2
ω

(

b̃ω +
1

2

∑

t

(κt − (κt−1 + θ))
2

)}

.

The posterior conditional distribution ofσ2
ω is thus IG

(

ãω + n
2 , b̃ω + 1

2

∑n
t=1 (κt − (κt−1 + θ))

2
)

.

3.4 Forecasting

The predictive distributions ofyn+k, givenyn, are obtained using the MCMC samples as follows. LetL be
the number of samples remained after burn-in. Then fork ≥ 1, and forℓ = 1 . . . , L, we sample recursively

κ
(ℓ)
n+k ∼ N

(

κ
(ℓ)
n+k−1 + θ(ℓ),

(

σ2
ω

)(ℓ)
)

, y
(ℓ)
n+k ∼ N

(

α(ℓ) + β(ℓ)κ
(ℓ)
n+k,

(

σ2
ε

)(ℓ)
1p

)

(11)

where the samplesκ(ℓ)
n are obtained from the FFBS procedure. This produces an estimate ofπ(yn+k|y1:n) =

∫

π(yn+k|κn+k,Ψ)π(κn+k|κn+k−1,Ψ) . . . π(κn,Ψ|y1:n) dΨdκn . . . dκn+k and samples from it for fore-
casting.

4 IMPLICATIONS FOR ANNUITY PRICING

In this section we aim to quantify the impact of longevity risk on the pricing of annuities, using the mortality
rates forecasted by the Lee-Carter model in state-space form which is estimated by the Bayesian approach
described in the previous section.

4.1 Estimation using Australian mortality data

The data set consists of Australian female mortality data obtained from the Human Mortality Database
(http://www.mortality.org). Since the application is for annuity pricing, we focus on 1-year death rates for
age 60-100 from year 1975-2011. Figure 1 shows the estimation results. Here we setαx1

= −5, βx1
= 0.2

and assumem0 = 0, C0 = 100, µ̃α = µ̃β = µ̃θ = 0, σ̃2
α = σ̃2

β = σ̃2
θ = 100, ãε = ãω = 2.1 and

b̃ε = b̃ω = 0.3. Number of iterations in MCMC is5000 and the burn-in iterations is1000. We use very vague
prior so that estimation is mainly determined by the data and the impact from prior is not material.

956



M. C. Fung, G. W. Peters and P. V. Shevchenko, A State-Space Estimation of the Lee-Carter Mortality Model...

60 70 80 90 100

−5
−4

−3
−2

−1

α

age

mean

95% CI

60 70 80 90 100

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

β

age

mean

95% CI

1975 1980 1985 1990 1995 2000 2005 2010

−3
−2

−1
0

1
2

κ

time

mean
95% CI

1980 2000 2020 2040

−6
.5

−5
.5

−4
.5

Age 65

time

lo
g 

de
at

h 
ra

te

1980 2000 2020 2040

−6
.0

−5
.0

−4
.0

Age 70

time

lo
g 

de
at

h 
ra

te

1980 2000 2020 2040

−5
.5

−4
.5

−3
.5

Age 75

time

lo
g 

de
at

h 
ra

te

1980 2000 2020 2040

−4
.5

−3
.5

Age 80

time

lo
g 

de
at

h 
ra

te

Figure 1. (Upper four panels) Posterior mean and95% confidence interval (CI) for parametersα, β; posterior
mean and95%CI for the latent processκ over year 1975-2011; mean and95%CI of the predictive distributions
of log central death rates(y65, y70, y75, y80) over 40 years forecast.

4.2 Annuity pricing

The τ year survival probability of a person agedx currently (i.e. t = 0 or year 2012) is determined by
τpx =

∏τ
j=1 1px+j−1 =

∏τ
j=1 e

−mx+j−1,j−1 ,which is a random variable sincemx+j−1,j−1, for j = 1, . . . , τ ,
are random quantities forecasted by the Lee-Carter model. Assuming a large enough annuity portfolio, the
price of an annuity with maturityT year, written for ax-year-old with benefit$1 per year and conditional on
the pathmx

1:T = (mx,0,mx+1,1, . . . ,mx+T−1,T−1), is given by

aTx (m
x
1:T ) =

T
∑

τ=1

B(0, τ)E(1Tx>τ |m
x
1:τ ) =

T
∑

τ=1

B(0, τ)τpx(m
x
1:τ ) (12)

whereB(0, τ) is theτ -year bond price,mx
1:τ is the firstτ elements ofmx

1:T , andτpx(m
x
1:τ ) denotes the

survival probability givenmx
1:τ which is random. Denuit and Dhaene (2007) shows that some bounds of

τpx(m
x
1:τ ) can be computed analytically. Biffis (2005) evaluates annuity prices allowing for longevity risk

using financial theory. From an annuity provider’s perspective, what is important, however, is that the annuity
price is a random quantity depending on the random paths ofmx

1:T . Moreover, it is important to determine a
survival curveτpx (as a function ofτ ) in (12) that best captures the mortality experience of the portfolio for
risk management purposes. In this regard, we evaluate different quantiles of the annuity priceaTx (m

x
1:T ) in

Table 1 and extract the corresponding survival curves. Note that the forecasted death rate samples are used to
produce sample pathsmx,(ℓ)

1:T and hence samples of annuity pricesa
T,(ℓ)
x (mx

1:T ) whereℓ = 1, . . . , L.

Impact of longevity risk. The possibility that the realised survival curve would be different to the survival
curve assumed for pricing leads to the so-called systematic mortality risk, a.k.a. longevity risk. In Table 1 we
compare the median, 0.025 quantile and 0.975 quantile of the annuity prices for different ages and maturities.
We also assume a constant interest rater = 3% and henceB(0, τ) = e−rτ . Although the price difference
might appear to be overall small, mis-pricing can be a significant risk when considering a large annuity port-
folio. For an annuity portfolio consists ofN policies where the benefit per year isB, an under-pricing ofγ%
of the “correct” annuity price will result in a shortfall ofNBaTx γ/100 whereaTx is the “wrong” annuity price
being charged with benefit$1 per year. For instance,N = 10, 000 policies written to 80-year-old policyhold-
ers with maturityτ = 20 years and$20, 000 benefit per year will result in a shortfall of$67 million when the
realised survival curve is the one that corresponds to the 0.975 quantile annuity price, while the survival curve
corresponds to the median annuity price is assumed for pricing (hereγ = 4.1 in Table 1). Moreover, as shown
in Table 1, mis-pricing is increasingly more pronounced for older ages as well as for annuity policies having a
longer maturity.
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Table 1. Annuity price with different age and maturity (T ) for female policyholder. Value in bracket ( ) is the 
percentage difference compared to median annuity price. We only consider contracts with maturity so that 
age + maturity ≤ 100.

Maturity (years) T = 5 T = 10 T = 15 T = 20 T = 25 T = 30

age= 65

Median 4.49 8.18 11.14 13.38 14.88 15.64
0.025 Q 4.48 (-0.2%) 8.13 (-0.6%) 11.00 (-1.3%) 13.10 (-2.1%) 14.42 (-3.1%) 15.03 (-3.9%)
0.975 Q 4.50 (+0.2%) 8.22 (+0.6%) 11.26 (+1.1%) 13.63 (+1.9%) 15.31 (+2.9%) 16.22 (+3.7%)

age= 70

Median 4.42 7.94 10.57 12.30 13.15 13.41
0.025 Q 4.41 (-0.4%) 7.86 (-1.0%) 10.37 (-1.9%) 11.92 (-3.1%) 12.63 (-4.0%) 12.82 (-4.4%)
0.975 Q 4.44 (+0.4%) 8.01 (+0.9%) 10.76 (+1.8%) 12.66 (+2.9%) 13.67 (+4.0%) 14.00 (+4.4%)

age= 75

Median 4.31 7.49 9.54 10.52 10.81 N.A.
0.025 Q 4.29 (-0.7%) 7.38 (-1.6%) 9.27 (-2.8%) 10.12 (-3.8%) 10.35 (-4.3%) N.A.
0.975 Q 4.34 (+0.6%) 7.61 (+1.5%) 9.80 (+2.8%) 10.92 (+3.8%) 11.28 (+4.3%) N.A.

age= 80

Median 4.08 6.63 7.83 8.18 N.A. N.A.
0.025 Q 4.03 (-1.1%) 6.48 (-2.4%) 7.57 (-3.4%) 7.86 (-3.9%) N.A. N.A.
0.975 Q 4.12 (+1.1%) 6.79 (+2.3%) 8.10 (+3.4%) 8.51 (+4.1%) N.A. N.A.

5 CONCLUSIONS

This article explores further the state-space representation of the Lee-Carter model in longevity modeling. We
derive in details the posterior distributions of the static parameters and the latent process of the model under
the Bayesian framework via Gibbs sampling. We suggest an identification constraint for the model that is
particularly suitable for estimation under a MCMC approach. The predictive distributions of death rates are
used to determine the range of annuity prices. Our results show that the assumption of survival curve has
significant impact on annuity prices. Annuity written for older age policyholders is particularly vulnerable to
mis-pricing caused by longevity risk.
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