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Abstract: Cancer is one of the most dangerous diseases around the world and the most common cancer 
among women is breast cancer. Although not all the cancer types are curable upon diagnosis, breast cancer can 
be cured if it is diagnosed early. The most reliable way of diagnosing breast cancer is mammographic screening 
which can diagnose the disease 1.5 to 4 years before it is clinically diagnosed. Double Reading is the important 
diagnostic process in which two experts/radiologists should read the same mammogram image to make an 
accurate diagnosis. But this process is not a cost-effective approach for early detection of breast cancer. 
Computer-Aided Diagnosis (CAD) can act as the second expert and therefore one expert would be enough for 
breast cancer diagnosis. In this study, we use the data extracted from low-resolution as well as high resolution 
mammography images. The attributes extracted from mammographic images are imported into Support Vector 
Machine (SVM) to classify the patients. An important point about the attributes is that sometimes there may 
be some irrelevant or even noisy attributes that have negative effect on the classification accuracy. Therefore, 
the main objective of this study is to apply local and global search paradigms in order to find the best subset of 
attributes to construct the most accurate CAD system that can effectively distinguish between benign and 
healthy patients. Artificial Bee Colony (ABC) is a population-based swarm intelligence algorithm with good 
global exploration ability, and Simulated Annealing (SA) is a robust local-search algorithm. Thus, we utilize a 
hybrid global and local search algorithm (named ABCSA) to simultaneously benefit from the advantages of 
both ABC and SA. In this approach, ABC is firstly performed for the global exploration in the search space. 
Then, SA is utilized to search locally in the vicinity of the best solution found via ABC, in order to improve 
the quality of the final solution. Obtained simulation results over four different mammographic datasets show 
that the proposed algorithm outperforms the existing metaheuristic feature selection approaches in terms of 
minimizing the number of features, while maximizing the detection accuracy. 

Keywords: Early detection of breast cancer, mammographic data, Support Vector Machine (SVM), feature 
selection, Artificial Bee Colony (ABC), Simulated Annealing (SA) 
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1. INTRODUCTION 

Breast cancer is the most common cancer among women, with around 1.7 million and 52000 estimated 
diagnosed cases and deaths in 2012, respectively (Torre et al., 2015). The patient can be survived if the disease 
is diagnosed early. Mammography, which is a low-dose X-ray image, is currently the most common way to 
early diagnosis of breast cancer. There are two kinds of mammography image: Screen-Film Mammography 
(SFM) and Full-Field digital Mammography (FFDM). In the first type, the image takes a form of photographic 
film, while in the latter, an electronic image is recorded directly on a computer (Faridah, 2008). Due to SFM 
drawbacks, such as X-ray exposure range, image contrast, and slow processing, FFDM with advantages, such 
as wider range, better contrast, less noise, higher quality of image, and lower dose of X-ray, has become more 
popular. Although it has been reported that there is little difference between overall accuracy of SFM and 
FFDM (Pisano et al., 2005), FFDM outperforms in particular cases (Spurgeon, 2005). As a case in point, it has 
been shown that FFDM is able to detect more lesions than SFM, particularly for microcalcifications (Spurgeon, 
2005). It has been also found that FFDM has better accuracy for premenopausal/perimenopausal women (under 
50 years old) who have denser breasts (Pisano et al., 2008).  

In order to increase the reliability of mammography-based diagnosis, two radiologists are usually asked to 
check the mammogram images (this process is called double reading). Besides the possibility of failure in 
identifying lesions by radiologists, the double reading process is costly. Thus, Computer-Aided Detection 
(CAD) systems, which utilize computer-based algorithms to detect lesions in mammographic images and then 
classify patients as benign or malignant, can replace one of the radiologists to overcome the aforementioned 
issues (Sampat et al., 2005). Therefore, CAD system is considered as a second opinion. It has been reported 
that the detection sensitivity can be improved by more than 20% if a radiologist uses CAD system for breast 
cancer diagnosis (Brem et al., 2003). A typical CAD system extracts attributes from mammography images 
(through image processing techniques), and selects the most important features (through attribute selection 
methods), and finally classifies patients using a classification algorithm.  

Four different types of attributes can be extracted from mammography images. The first group comprises 
clinical attributes, such as breast density, microcalcification, architectural distortion, etc. The second and third 
groups are calculated from the pixel grey-level intensity of the patch using statistical calculations. The second 
group is intensity-based descriptors (such as Mean, standard deviation, Skewness, etc.) while the third group 
is texture-based descriptors (such as energy, contrast, entropy, etc.). The last type of attributes includes location 
and shape-based features, such as area, centre of mass, solidity, etc. Using all the aforementioned attributes 
may not result in the most accurate CAD system because there may be some irrelevant or noisy attributes that 
hinder the system’s ability to distinguish between healthy and cancer patients correctly. Therefore, it is crucial 
to adopt an appropriate attribute selection strategy in order to select the most important subset of attributes that 
can be later used to classify patients accurately (Abroudi et al., 2013). Numerous CAD systems for early 
detection of breast cancer have been presented and they have used different data as well as different metrics to 
measure the system classification performance (Table 1). One of the most common measures is the area under 
the Receiver Operating Characteristics (ROC) curve which is mostly depicted as AZ. The specificity (the ratio 
of true negatives to healthy cases), sensitivity (the ratio of true positives to cancer cases), and accuracy (the 
ratio of all true classified instances to all instances) are three other measures. A list of some CAD systems 
applied on different mammography-based datasets is presented in Table 1. It can be seen that the number of 
mammogram images varies between different studies (40 to 3369) and the applied classification algorithms are 
also different, such as various Artificial Neural Network (ANN) extensions, Linear Discriminant Analysis 
(LDA), Hybrid techniques, Support Vector Machine (SVM). Therefore, it is hard to make a fair comparison 
between performance of different CAD systems.  

Table 1. Details of some current mammography-based CAD systems 
Author(s) Images Method Performance 

(Chan et al., 1995) 168 Linear Discriminant Analysis (LDA)  ௓: 0.82ܣ
(Sahiner et al., 1996) 168 Convolution Neural Network (CNN)  ௓: 0.87ܣ

(Kinoshita et al., 1998) 92 Back Propagation Neural Network (BPNN) Acc: 0.81 
(Hadjiiski et al., 1999) 348 Hybrid (Art2 and LDA)  ௓: 0.81ܣ

(Bruce & Adhami, 1999) 60 A simple Euclidian Metric Acc: 0.83 
(Mudigonda et al., 2001) 56 LDA  ௓: 0.9ܣ
(Verma & Zakos, 2001) 58 BPNN Acc: 0.889 

(Baeg & Kehtarnavaz, 2002) 404 ANN-MLP  ௓: 0.9ܣ
(De Santo et al., 2003) 102 ANN-MLP  ௓: 0.79ܣ

(Campanini et al., 2004) 512 Support Vector Machine (SVM) Sens: 0.80 
(Guo et al., 2005) 40 Radial-Base Function (RBF) Neural Network, SVM Acc: 0.725 

(Bellotti et al., 2006) 3369 ANN-MLP Sens: 0.80,  ܣ௓: 0.783
(Timp et al., 2007) 465 SVM  ௓: 0.77ܣ

(Al Mutaz et al., 2011) 120 Artificial Neural Network (ANN)–Multi-Layer Perceptron (MLP) Sens: 0.916 Spec: 0.841
(Dinesh, 2011) 190 SVM Sens: 0.96 Spec: 0.97
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In this paper, using both SFM and FFDM data, we aim to enhance the CAD system performance for early 
detection of breast cancer through a combination of heuristic local and global search methods (to find the best 
subset of attributes) that can render the highest accuracy for SVM classifier. The rest of the paper is organized 
as follows: In Section 2, SFM and FFDM datasets are described. The proposed ABCSA feature selection 
algorithm is illustrated in detail in Section 3. Simulation results and comparison with existing algorithms are 
summarized in Section 4. Finally, concluding remarks are presented in Section 5. 

2. SFM AND FFDM DATASETS 

This study uses two SFM and two FFDM datasets retrieved from Breast Cancer Digital Repository (BCDR) 
database (http://bcdr.inegi.up.pt) (López et al., 2012). The details of these datasets can be seen in Table2.  

Table 2. Details of SFM and FFDM datasets 
Dataset Name Dataset Type # Women # Lesions # Segmentations 

SFM1 SFM 190 200 362 
SFM2 SFM 98 103 188 

FFDM1 FFDM 64 79 143 
FFDM2 FFDM 162 230 455 

 

The list of attributes (including clinical, intensity-, Texture-, location and Shape-based features) and a short 
description of each are summarized in Table 3 (Moura & López, 2013; Moura et al., 2012).  

Table 3. The list of attributes 
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Attribute Explanation
Age The patient’s age when he/she took the test

Image View Image view type which can be 1-RCC, 2-LCC, 3-RO, or 4-LO  

Breast Density The breast density based on the Breast Image Reporting and Data System (BI-RADS) standard 
(D’orsi et al., 2003).  

Mammography Type Whether abnormality is present or not 
Mammography Nodule Whether there is a mass in the lesion or not

Mammography Architectural Whether an architectural-related distortion is present or not
Mammography Microcalcification Whether there are Microcalcifications in the lesion or not 
Mammography Stroma Distortion Whether a stroma-related distortion is present or not

Mammography Axillary Adenopathy Whether axillary adenopathy is present or not
Mammography Calcification Whether there are calcifications in the lesion or not 

Classification Category of the lesion based on the result of the biopsy
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Mean ܯ = ଵ௣∑ ௞௣௞ୀଵݕ , where ݌ is the total number of pixels in patch and ݕ௞is the intensity of ݇௧௛pixel 

within the corresponding patch.

Standard Deviation ܵܦ = ට ଵ௣ିଵ∑ ௞ݕ) − ଶ௣௞ୀଵ(ܯ ,  

Skewness ܹܵܭ = భ೛∑ (௬ೖିெ)య೛ೖసభ൬ටభ೛∑ (௬ೖିெ)మ೛ೖసభ ൰య , 

Kurtosis ܴܶܭ = భ೛∑ (௬ೖିெ)ర೛ೖసభቀభ೛∑ (௬ೖିெ)మ೛ೖసభ ቁమ − 3, 

Min ܰܯ =  .The lowest grey-level intensity found inside the patch ,(௞ݕ)݊݅݉

Max ܺܯ =  .The highest grey-level intensity found inside the patch ,(௞ݕ)ݔܽ݉
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Energy ܩܰܧ = ∑ ∑ ,݉)݌ ݊)ଶ௡ீୀଵ௠ீୀଵ , where ݌ is co-occurrence matrix of grey-levels, ܩ is different 
possible grey-levels, and ݌(݉, ݊) is the probability of co-occurrence of grey-levels ݉,݊. 

Contrast ܶܰܥ = ∑ ∑ (݉ − ݊)ଶ × ,݉)݌ ݊)௡ீୀଵ௠ீୀଵ , 

Correlation ܮܴܥ = ∑ ∑ (௠×௡)×௣(௠,௡)ି(ఓೣ×ఓ೤)ಸ೙సభಸ೘సభ (ఙೣ×ఙ೤) , where ߪ and ߤ are standard deviations and means of 

corresponding Partial Probability Distribution Function (PPDF), ௫ܲ or ௬ܲ. 
Variance ܸܴܣ = ∑ ∑ (݉ − ଶ(ߤ × ,݉)݌ ݊)௡ீୀଵ௠ீୀଵ , 

Homogeneity ܯܱܪ = ∑ ∑ ଵଵା(௠ି௡)మ × ,݉)݌ ݊)௡ீୀଵ௠ீୀଵ , 

Sum Average ܵܣ = ∑ ݉ × ௫ା௬(݉)ଶ௠ீୀଶ݌ , where ݉ = ݔ +  ௫ା௬(݉) is co-occurrence matrix probability݌ and ,ݕ
when the coordinates are summed.

Sum Entropy ܵܶܰܧ = −∑ (݉)௫ା௬݌ × log(ଶ௠ீୀଶ  ,((݉)௫ା௬݌
Sum Variance ܸܴܵܣ = ∑ (݉ − ଶ(ܶܰܧܵ − ௫ା௬(݉)ଶ௠ீୀଶ݌ , 

Entropy ܶܰܧ = −∑ ∑ ,݉)݌ ݊) × log(݌(݉, ݊))௡ீୀଵ௠ீୀଵ , 

Difference Variance 
ܴܣܸܦ = ∑ ݉ଶ × ௫ି௬(݉)ீିଵ௠ୀ଴݌ , where ݉ = ݔ| − ,|ݕ ܽ݊݀  ௫ି௬(݉) is co-occurrence matrix݌
probability when the coordinates are subtracted. 

Difference Entropy ܶܰܧܦ = −∑ (݉)௫ି௬݌ × log(ீିଵ௠ୀ଴  ,((݉)௫ି௬݌
Information Measure of Correlation 1 

∑ ∑ ,݉)݌ ݊) × log൫݌௫(݉) × ௬(݊)൯௡ீୀଵ௠ீୀଵ݌ − ∑ ∑ ,݉)݌ ݊) × log൫݌(݉, ݊)൯௡ீୀଵ 	௠ீୀଵmax ቄ∑ (݉)௫݌ × log൫݌௫(݉)൯௠ீୀଵ , ∑ (݉)௬݌ × log ቀ݌௬(݉)ቁ௠ீୀଵ ቅ  
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Information Measure of Correlation 2 ඩ1 − ݌ݔ݁ ൝2 × ൥෍ ෍݌௫(݉) × (݊)௬݌ × log൫݌௫(݉) × ௬(݊)൯ீ݌
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Area ܣ = ݔ݅݌ where ,|ݔ݅݌| indicates the segmented area’s pixels
Perimeter ܲ݁ݎ =  indicates the length of edge pixels (ܧ)݈݃݊ where ,(ܧ)݈݃݊

Centre of Mass ܯܱܥ = ݏ݁ݐܽ݊݅݀ݎ݋݋ܿ ݂݋ ℎ݁ݐ ݏݏܽ݉  ,݁ݎݐ݊݁ܿ

Solidity ݈ܵ݀ = ܣ ൗ|ܪܥ| , where ܪܥ is the set of convex hull pixels of the patch 

Extent ݐݔܧ = ܣ ൗ|ܤܤ| , where ܤܤ is the set of bounding box pixels of the patch 

Elongation 
݈݃ܧ = ݉݊ ݆݉ൗ , where ݉݊ and ݉ ݆ are minor and major axes of most similar ellipse to the patch (having 

the equal second central moments), respectively. 

Circularity ݈ݎܥ = ߨ4 × ஺௉௘௥మ, 
Form ݉ݎ݋ܨ = ா௟௚×௉௘௥଼×஺ , 

 

Having these attributes, our aim is to select the most effective subset of attributes that renders the highest 
classification accuracy for early detection of breast cancer. This will be done through local and global search 
methods that are presented in the following section.   

3.  THE PROPOSED ABCSA 
ALGORITHM 

Artificial Bee Colony (ABC) (Karaboga & 
Basturk, 2007) is a swarm intelligence algorithm 
with good global exploration ability. Also, 
Simulated Annealing (SA) is a metaheuristic 
single-solution optimization algorithm which has 
a very good local search mechanism (Shokouhifar 
& Jalali, 2015). Our motivation is to incorporate 
the advantages of both ABC and SA into a hybrid 
ABCSA algorithm. Generally, in the beginning of 
the optimization process, we search globally in the 
search space. On the other hand, local search can 
be very useful at the later iterations. In our 
approach, at first, ABC is performed, and then, SA 
is used to search in the vicinity of the best solution 
found by ABC, in order to improve the best 
solution of ABC. The overall flowchart of the 
proposed hybrid ABCSA algorithm can be seen in 
Fig. 1.  

3.1. Problem Representation 

In both ABC and SA phases, as seen in Fig. 2, a feasible solution can be represented as a binary string of length ܮ, where ܮ is the total number of original features. The multi-objective cost function in both ABC and SA 
phases contains two objectives, both to be minimized. On the other hand, the first objective (the percent of the 
selected features) is in conflict with the second objective (the classification error), in such a way that as the first 
objective minimized (more discarded features), it would generate a greater classification error rate. In this case, 
the two objective functions can be combined into a single one by means of a weighted sum, as follows: ݁ݖ݅݉݅݊݅ܯ	 ቄݐݏ݋ܥ = ଵݓ × ቀଵ௅ ∑ ௜ܵ௅௜ୀଵ ቁ + ଶݓ ×  ቅ                                                 (1)ܧ

௜ܵ = ቄ	1											݂݅	݂݁ܽ݁ݎݑݐ	݅	ℎܽݏ	ܾ݊݁݁	݀݁ݐ݈ܿ݁݁ݏ	0											ݐ݋ℎ݁݁ݏ݅ݓݎ																																								(2)                                                  

where the left term is to minimize the number of features, and the 
right term is to minimize the classification error achieved via SVM 
on the test instance set. ݓଵ and ݓଶ are two constant weights to adjust 
the relative importance of the two terms within the objective 
function. Since the classification accuracy is more important than the 
selected feature subset size, we assume	ݓଶ ≫   .ଵݓ

Final Optimized Feature Subset 

Continue 

Evaluation of Objective 
Function for  ܵ௡௘௪

Determining the Best Solution of ABC
as Initial Solution for SA ( ܵ௖௨௥ ) 

Replacement Rule 
Checking

Generation of  ܵ௡௘௪ in 
Neighborhood of  ܵ௖௨௥
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S
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Save Best
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Function for Each Bee 

Initial Population Generation for ABC 

Onlooker 
Phase 
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Employed 
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SA Phase

ABC Phase

Figure 1. Overall flowchart of the ABCSA algorithm

0 1 0 0 1 0 1 .  .  . 1

1 2 3 4 5 6 7 L

Figure 2. A feasible solution: “1” 
denotes that the corresponding feature 
is present, and “0” otherwise. 
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3.2. Global Search via ABC 

In ABC, each feasible solution corresponds to a food source position in ܮ-dimension area (see Fig. 2), where ܮ is the number of optimization variables (number of original features). The nectar value of a feasible solution 
relates to the fitness of the solution. The nectar value (fitness) of ݇௧௛ bee is calculated as ݏݏ݁݊ݐ݅ܨ௞ =  ,௞ݐݏ݋ܥ/1
in which, ݐݏ݋ܥ௞ is the cost of ݇௧௛ bee to be minimized. An artificial bee colony consists of three kinds of 
artificial bees: employed bees, onlooker bees and scout bees (Shokouhifar & Jalali, 2014). At first, the initial 
population is randomly generated. At the every iteration, each employed bee is moved onto her previously 
visited food source environment to explore a new food source in the vicinity of the present one. If the nectar 
amount of the new solution is higher, the bee forgets the previous one and memorizes the new one. The 
employed bee whose food source has been abandoned will become a scout bee. It is controlled by a parameter 
called limit. Scout bees carry out random searching to discover a new solution. Whenever all employed bees 
construct their solutions, they come back into the hive and share their information with onlookers. As seen in 
Eq. (3), the more nectar the employed contains, the more probability the onlooker to choose it, in which, ݊ is 
the number of employed bees, and ߚ is a constant parameter. Each onlooker goes onto the area of the selected 
employed bee, in order to explore a new food source within its vicinity.  ௞ܲ = (ி௜௧௡௘௦௦ೖ)ഁ∑ (ி௜௧௡௘௦௦ೕ)ഁ೙ೖసభ                                                                    (3)  

3.3. Local Search via SA 

Generally, SA starts with a random initial solution. However, in this study, the final global best solution of 
ABC is selected as the initial solution for SA. The role of SA is to search in the vicinity of the final solution of 
ABC, with the aim to improve it. At every iteration, a new solution (ܵ௡௘௪) is generated in the neighborhood of 
the current one (ܵ௖௨௥). If ݐݏ݋ܥ௡௘௪ < ௡௘௪ݐݏ݋ܥ ௖௨௥, the current solution is replaced with the new one. Ifݐݏ݋ܥ   :௖௨௥, the new solution may be accepted with the probability ofݐݏ݋ܥ<

 ௪ܲ = ௡௘௪ݐݏ݋ܥ)−)݌ݔ݁ −   ௖௨௥)/ܶ)                                                             (4)ݐݏ݋ܥ

where ݐݏ݋ܥ௖௨௥ and ݐݏ݋ܥ௡௘௪ are the cost function for ܵ௖௨௥ and ܵ௡௘௪, respectively. Also, ݐௌ஺ and ݉ܽݎ݁ݐ݅_ݔௌ஺ 
are the current iteration, and the defined number of iterations in SA, respectively. The temperature ܶ is 
considered to decrease linearly from ௜ܶ௡௜௧௜௔௟ (initial temperature) to ௙ܶ௜௡௔௟ (final temperature), during 
algorithm execution, as follows: ܶ = ௜ܶ௡௜௧௜௔௟ + ௧ೄಲ௠௔௫_௜௧௘௥ೄಲ × ( ௙ܶ௜௡௔௟ − ௜ܶ௡௜௧௜௔௟)                                                     (5) 

As demonstrated in Fig. 3, binary swap operator is utilized for 
the neighborhood search in both ABC and SA phases.    
 

4.  SIMULATION RESULTS 

In order to adjust the controllable parameters of the proposed ABCSA algorithm, different values were 
evaluated and the best ones (in terms of objective function and convergence speed) were determined. Settings 
for the parameters of the proposed hybrid ABCSA algorithm can be summarized in Table 4. Different kernel 
functions for SVM classifier are evaluated, and the linear kernel achieved the best result among them. Thus, 
we use linear kernel for the SVM classifier in our experiments. The obtained results of the ABCSA algorithm 
and comparison with the original datasets (containing all original features) can be summarized in Table 5. 
Furthermore, we have compared the obtained results with other metaheuristic feature selection algorithms 
including Genetic Algorithm, Artificial Bee Colony, and Simulated Annealing.   
  

0 1 0 1 0 0 1 .  .  . 1

0 1 0 1 1 0 1 .  .  . 1

Figure 3. Binary swap operator for the 
neighborhood search in both ABC and SA 

Table 4. Settings for the parameters of the
proposed ABCSA algorithm 

Parameter Value/Description ݉ܽݎ݁ݐ݅_ݔ஺஻஼ ܮ 
Population size of ABC phase 20 
Number of employed bees 25 (the half of colony)
Number of onlooker bees 25 (the half of colony) 

Limit 
2.5 order larger than the 

best cost 
β  in Eq. (3) 5 ݉ܽݎ݁ݐ݅_ݔௌ஺ 2 ×  ଶ  in Eq. (1) 0.99ݓ ଵ  in Eq. (1) 0.01ݓ ௜ܶ௡௜௧௜௔௟  in Eq. (5) 0.01 ௙ܶ௜௡௔௟  in Eq. (5) 0 ܮ

Table 5. Comparison of the results of the proposed ABCSA  
algorithm with original datasets 

Dataset Name # Features Sens Spec Acc 

SFM1 
All Features 38 81.03 % 88.24 % 84.4 % 

Selected Features 29 87.93 % 86.27 % 87.16% 

SFM2 
All Features 38 64.29 % 82.14 % 73.21 % 

Selected Features 19 78.57 % 89.29 % 83.93 % 

FFDM1 
All Features 38 93.75 % 81.48 % 86.05 % 

Selected Features 8 93.75 % 96.3 % 95.35 % 

FFDM2 
All Features 38 93.33 % 99.17 % 98.53 % 

Selected Features 23 100 %  100 % 100 % 
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The simulation results can be seen in Table 6, in terms of the number of selected features and final accuracy. 
According to result of the simulations, the proposed ABCSA outperforms the other metaheuristic algorithms, 
in terms of the minimization of the selected features while maximizing the detection accuracy. From Table 6, 
it can be seen that the proposed ABCSA algorithm outperforms all compared algorithms for the two datasets 
SFM1 and FFDM1. In the case of SFM2 dataset, the ABCSA and ABC have achieved equal accuracy, and the 
both algorithms outperform GA and SA. However, ABCSA has 19 features (3 features lower than ABC). 
Finally, in the case of FFDM2 dataset, the proposed ABCSA, ABC and GA have achieved the maximum 
accuracy 100%. In this case, both ABCSA and ABC have 23 features. As seen, in SFM1 and FFDM1 ABCSA 
outperforms ABC, but in SFM2 and FFDM2, both ABCSA and ABC have equal accuracy. It is due to added 
local search exploration via SA. On the other hand, in SFM1 and FFDM1 datasets, the added local search 
mechanism (via SA) leads to improve the result of ABC.  
 

Dataset Name 
GA SA ABC Proposed (ABCSA)

# Features Accuracy # Features  Accuracy # Features Accuracy # Features  Accuracy 
SFM1 27 86.32% 32 84.91% 24 85.54% 29 87.16%
SFM2 16 79.19% 26 80.6% 22 83.93% 19 83.93 %

FFDM1 15 92.26% 17 94.12% 13 93.33% 8 95.35 % 
FFDM2 26 100% 19 99.24% 23 100% 23 100 %

5. DISCUSSION AND CONCLUSIONS 

The best and most common way of breast cancer diagnosis is mammography which has been reported to be 
able to detect the cancer up to four years in advance. Therefore, in this paper, a hybrid feature selection 
algorithm based on both local and global search paradigms has been presented for the early detection of breast 
cancer based on two types of mammogram images. The central objective of this paper is to apply ABC (as 
global search method) and SA (as local search method) to find the best subset of features in order to accurately 
classify benign and healthy patients. The proposed hybrid algorithm is called ABCSA.  We have used SVM as 
the classifier. Simulations show that the proposed ABCSA algorithm outperforms the existing metaheuristic 
feature selection algorithms in terms of maximizing the detection accuracy. As a future work, we plan to utilize 
the proposed methodology for genome-based breast cancer datasets. We also plan to propose other hybrid 
global and local search algorithms for effective feature selection in different problems. 
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