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Abstract: Rainfall in southeast Australia is known to be affected by large scale climate modes variability.  
This study focused on investigating the use of lagged El Nino Southern Oscillation (ENSO) as potential 
predictors of spring rainfall in Victoria and Queensland in east Australia. Six rainfall stations including 
Bruthen, Buchan and Orbost in Victoria and Barcaldine, Kalamia and Augathella in Queensland were chosen 
as case study. Artificial Neural Network (ANN) approach was used as a nonlinear technique to capture this 
complex relationship. The Pearson correlation coefficients of past values of ENSO with spring rainfalls were 
calculated; it was discovered that the three months of June, July and August of Nino3.4, have significant 
correlation with spring rainfall. These correlations are very weak for Victoria and relatively higher for 
Queensland. These lag months of ENSO were incorporated into ANN models; i.e. the set of Nino3.4 (Jun-July-

Aug) was used as inputs for developing ANN models for the stations in Victoria and Queensland. Multilayer 
Perceptron (MLP) architecture was chosen for this purpose. The models were trained based on Levenberg-
Marquardt algorithm. ANN models showed higher correlation for Queensland compared to Victoria 
indicating that ANN is more capable of finding the pattern and trend of the observations in Queensland.  

After calibrating and validating the models, in order to evaluate the generalization ability of the developed 
ANN models, out-of-sample tests were carried out. It was discovered that ANN models are showing very 
poor generalization ability for east Victoria regarding finding the pattern of the series (r = -0.97, 0.23 and -
0.67 for Bruthen, Buchan and Orbost respectively) compared to Queensland with correlation coefficients of 
0.74, 0.100 and 0.98 for Barcaldine, Kalamia and Augathella respectively. This study shows the ability of 
ANN in finding nonlinear relationships between complex large scale climate models and rainfalls in south-
east Australia.   
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1. INTRODUCTION 

Forecasting rainfall several months or seasons in advance can be beneficial for the management of water 
resources.  Many researchers have tried to find the relationships between large-scale climate modes and 
rainfall in different parts around the world (Lau et al, 2001, Yufu et al, 2002,  Hartmann et al, 2007, and  
Shukla et al, 2011). Australian rainfall is highly variable both in space and time. It is found that Australian 
rainfall is affected by several major climate patterns. The major drivers bringing rainfall over Australia which 
have been investigated by many researchers are El Nino Southern Oscillation (ENSO), Indian Ocean Dipole 
(IOD) and Southern Annular Mode (SAM) (Kirono et al, 2010). Many researchers have conducted different 
studies in different parts of Australia trying to establish the relationship between these climate modes and 
Australian rainfall. Some of these studies cover the whole Australia (Risbey et al, 2009, Meneghini et al, 
2007 and Kirono et al, 2010) while the others are more focused on a specific region like South West Western 
Australia (SWWA) (Ummenhofer et al, 2008; and England et al, 2006), South Australia (Evans et al; 2009 
and Nicholls, 2010), South East Australia (SEA) and East Australia (Verdon et al, 2004, Murphy and Timbal, 
2008).Victoria is one of the regions that so far did not show good correlation of its rainfall and the climate 
modes. According to Verdon-Kidd & Kiem (2009) in comparison to eastern Australia and particularly 
Queensland, past studies considering southeast Australian rainfall predictability could achieve a maximum of 
30% correlation. In the work of Murphy and Timbal (2008) the maximum correlation, 0.37, was obtained for 
spring rainfall and spring  Nino4 index of ENSO. According to Verdon et al., (2004), compared to other parts 
of Australia ENSO signals are relatively weak in Victoria. This study will further investigate this matter by 
comparing the relationship between rainfall and ENSO in Queensland and Victoria in east Australia.  The 
majority of studies on ENSO-rainfall relationships did not consider the effect of lagged climate modes on 
future rainfall predictions. According to Schepen et al., (2012) a strong relationship between simultaneous 
climate modes and rainfall does not essentially mean that there is a lagged relationship as well. Of the few 
studies focusing on the lagged climate –rainfall relationship one can mention Abbot and Marohasy (2012), 
Drosdowsky and Chambers (2001),  Kirono et al., (2010), Mekanik and Imteaz (2012), Schepen et al., (2012) 
and Mekanik et al., (2013).  Thus, the objective of this study is to investigate the relationship of lagged 
ENSO and spring rainfall in Victoria and Queensland, as two case studies. To achieve this objective Artificial 
Neural Network is used.  Six rainfall stations are chosen in east Australia, three in eastern Victoria and three 
in eastern Queensland. Model outputs were aimed to be deterministic forecast as opposed to probabilistic 
forecast. 

2. Data 

Historical monthly rainfall data was obtained from the Australian Bureau of Meteorology for Bruthen, 
Buchan, Orbost in east Victoria and Barcaldine, Kalamia and Augathella in eastern Queensland, Australia as 
case studies. Figure1 shows the location details of the stations considered in this study. Spring (September - 
November) rainfall was obtained from monthly rainfall data from January 1900 to December 2009 
(www.bom.gov.au/climate/data/).  Also, monthly values of, Nino3.4 were used as ENSO indicator. ENSO 
indices were obtained from Climate Explorer website (http://climexp.knmi.nl/). 

 

Figure 1. Map of the study area 

3. METHODOLOGY 

ANN has been used in many hydrological and meteorological applications; It has also been used for many 
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cases of rainfall forecasting (Hsu et al., 1995; Luk et al., 2001; Mekanik et al., 2011; Toth et al., 2000, 
Yilmaz et al.,2011). 

The parameters for ANN modelling are basically network topology, neurons characteristics, training and 
learning rules. Multi-Layered Perceptrons (MLP) are feed-forward nets with one or more hidden layers 
between the input and output neurons. The number of input and output neurons is based on the number of 
input and output data. Basically, the input layer only serves as receiving the input data for further processing 
in the network. The hidden layers are a very important part in a MLP since they provide the nonlinearity 
between the input and output sets. More complex problems can be solved by increasing the number of hidden 
layers or neurons. The output neuron is the desired output of the model. The process of developing an ANN 
model is to find a) suitable input data set, b) determine the number of hidden layers and neurons, and c) 
training and testing the network. Mathematically, the network can be expressed as follow: 

௧ܻ = ଶ݂[∑ ௝ݓ ଵ݂௃௝ୀଵ (∑ ௜ூ௜ୀଵݔ௜ݓ )]                                    (1) 
 
where ௧ܻ  is the output of the network, ݔ௜  is the input to the network, ݓ௜and  ݓ௝ are the weights between 
neurons of the input and hidden layer and between hidden layer and output respectively;  ଵ݂  and ଶ݂ are the 
activation functions for the hidden layer and output layer respectively. According to Maier and Dandy (2000) 
if extrapolating beyond the range of the training data is needed it is recommended to use sigmoidal-type 
transfer functions in the hidden layers and linear transfer functions in the output layer. In this study  ଵ݂ is 
considered tansigmoid function which is a nonlinear function and  ଶ݂  is considered the linear purelin 
function defined as follow: 

ଵ݂ = ଶ(ଵାୣ୶୮ 	(ିଶ௫)) − 1                                                (2) 

ଶ݂(ݔ) =  (3)                      ݔ

The ANN models were  trained based on Levenberg-Marquardt algorithm; number of hidden neurons was 
chosen based on constructive algorithm. In ANN modeling there is always the chance of having an over fitted 
model. To avoid this problem in this study early stop technique is applied while training and validating the 
models. Through using this method, the network stops the training when the error over the validation set 
starts to increase while the error over training set is still decreasing; In this way the network avoids over 
fitting (Luk et al., 2000; Sarle, 1995). The data were divided in to three sets, from 1900-1990 for calibration 
and from 1991-2006 for validation of the models. Three years 2007-2009 were selected as the out-of-sample 
set to evaluate the generalization ability of the developed models. The data were normalized between the 
range of 1 and 0 using Eq. (4).  ̅ݔ௜ = ௫೔ି௫೘೔೙௫೘ೌೣି௫೘೔೙          

 (4) 

4. RESULT AND DISCUSSION 

According to Lim et al., (2010) ENSO has a strong influence in the austral spring on eastern and southern 
Australia. Cheiw et al., (1998) also suggest that ENSO indicators can be used to some extent to forecast 
spring rainfall in eastern Australia; They found that the highest correlation between rainfall and climate 
indicators are obtained using SOI and SST values averaged over two or three months. On the other hand, 
Verdon et al., (2004) indicate that the influence of ENSO in Victoria (southeast Australia) appears to be 
weak. 

In this study correlation between spring rainfall at year n and Decn-1-Augn monthly values of ENSO indicator 
(Nino3.4) were calculated (“n” being the year for which spring rainfall is being predicted); It was discovered 
that the three months of June, July and August of Nino3.4 have the highest significant correlation with spring 
rainfall for both Victoria and Queensland (Table1); This result is in accordance to the findings of Cheiw et 
al., (1998) and Verdon et al., (2004), substantiating that not only  the highest correlations between rainfall 
and climate indicators are obtained up to three month lags i.e. there is no further significant relationship after 
lag 3 for Victoria;  It can be seen from Table 1 that these correlations are very weak for  Victoria and are 
relatively higher for Queensland.  
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These lag months of Nino3.4 were incorporated into ANN models; i.e. the set of Nino3.4 (Jun-July-Aug) was used 
as inputs for developing ANN models for the stations in Victoria and Queensland. Table 2 summarises the 
prediction skills of these models regarding MSE and Pearson correlation (r). 

Table1. Pearson correlation (r) of lagged climate indices and spring rainfall 

Region Station Lagged climate indices 

Nino34(Jun) Nino34(Jul) Nino34(Aug) 

Victoria Bruthen -0.20b -0.25a -0.28a

Buchan -0.22b -0.26a -0.24b

Orbost --- -0.24b -0.26a

Queensland Barcaldine -0.35a -0.32a -0.35a

Kalamia -0.31a -0.30a -0.35a

Augathella -0.32a -0.29a -0.30a

a: correlation is significant at the 0.01% level 
b: correlation is significant at the 0.05% level 
 

Table 2. Model performance for Queensland and Victoria 

 Queensland Victoria 

 Barcaldine Kalamia Augathella Bruthen Buchan Orbost 

MSE 0.04 0.01 0.02 0.04 0.03 0.02 

R 0.79 0.57 0.67 0.53 0.57 0.25 

 

It can be seen from Table 2 that the correlation coefficients of ANN models for Queensland is significantly 
higher compared to Victoria. Model errors are not significantly different for the two states except for 
Kalamia with an MSE of 0.01. The higher correlation coefficient of ANN models for Queensland indicate 
that ANN is more capable of finding the pattern and trend of the observations  using the lagged Nino3.4 in 
Queensland compared to Victoria. 

After calibrating and validating the models, in order to evaluate the generalization ability of the developed 
ANN models, out-of-sample tests were carried out on the years 2007-2009 (Table 3). It can be seen that ANN 
models are showing very poor generalization ability for east Victoria regarding finding the pattern of the 
series (r = -0.97, 0.23 and -0.67 for Bruthen, Buchan and Orbost respectively) compared to Queensland with 
correlation coefficients of 0.74, 1.00 and 0.98 for Barcaldine, Kalamia and Augathella respectively. 

Table 3. Model performance for test sets 

 Queensland Victoria 

 Barcaldine Kalamia Augathella Bruthen Buchan Orbost 

MSE 0.04 0.00 0.05 0.02 0.03 0.05 

R 0.74 1.00 0.98 -0.97 0.23 -0.67 

 

Figure 2 and 3 shows comparisons between ANN models for Victoria and Queensland. It can be seen from 
these figures that the models generally underestimate the observations. To further asses this matter mean and 
standard deviation of the models were evaluated (Table 4). It is obvious from Table 4 that the models have a 
mean close to the mean of the series however the standard deviation is lower indicating an underestimation of 
the observations. This means that lagged ENSO alone is not capable of predicting spring rainfall, other 
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climate modes like Indian Ocean dipole (IOD) and Southern Annual Mode (SAM) must be considered as 
well for this purpose. 

 

 

Figure 2. ANN models for Victoria 
 
 

 

 
 
Figure 3. ANN models for Queensland 
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Table 4. Mean and standard deviation of the models and observations 

Region Station mean Standard.Dev 
Observation Model Observation Model 

Queensland Barcaldine 0.28 0.29 0.20 0.11 
Kalamia 0.16 0.15 0.14 0.07 

Augathella 0.24 0.24 0.18 0.09 
Victoria Bruthen 0.40 0.38 0.23 0.10 

Buchan 0.39 0.40 0.22 0.13 
Orbost 0.34 0.36 0.21 0.05 

5. CONCLUSION 

This study focused on investigating the use of lagged El Nino Southern Oscillation (ENSO) as potential 
predictors of spring rainfall; Nino3.4 was used as ENSO indicator. Artificial Neural Network (ANN) 
approach was used as a nonlinear technique to capture this complex relationship. Six stations in the two states 
of Victoria and Queensland were chosen as case study.  

The Pearson correlation coefficients of past values of ENSO with spring rainfalls for the 6 stations were 
calculated; It was discovered that the three months of June, July and August of Nino34, have the highest 
significant correlation with spring rainfall. These correlations are very weak for Victoria and relatively higher 
for Queensland. These lag months of Nino3.4 were incorporated into ANN models; i.e. the set of Nino3.4 (Jun-

July-Aug) was used as inputs for developing ANN models for the stations in Victoria and Queensland. 

Multilayer Perceptron (MLP) architecture was chosen for this purpose due to its wide use in hydrologic 
modellings. The models were trained based on Levenberg-Marquardt algorithm. ANN models showed higher 
correlation for Queensland compared to Victoria indicating that  ANN is more capable of finding the pattern 
and trend of the observations in Queensland.  

After calibrating and validating the models they were tested on out-of-sample sets. It was found that 
generalization ability of ANN models for Victoria is very poor compared to Queensland. ANN was able to 
perform out of sample test with correlation coefficient of 0.74~0.98 for Queensland. This study shows the 
ability of ANN in finding nonlinear relationships between complex large scale climate modes and rainfalls in 
south-east Australia.   
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