
Analysing lagged ENSO and IOD as potential predictors 
for long-term rainfall forecasting using multiple 

regression modelling 

F. Mekanika, M. A. Imteaza 

aFaculty of Engineering and Industrial Sciences, Swinburne University of Technology, 
Melbourne, VIC, Australia, 

Email: fmekanik@swin.edu.au 

Abstract: Several climate indices around Australia were found to have strong correlations with south-east 
Australian seasonal rainfalls. Any such correlation with lagged climate indices and seasonal rainfall 
afterwards can be used for forecasting long-term seasonal rainfall. In this study, long-term forecasting of 
Victorian spring rainfall has been investigated using lagged El Nino Southern Oscillation (ENSO) and Indian 
Ocean Dipole (IOD) indices using multiple regression analysis. Three stations of Buchan (east VIC), 
Malmsbury (Central VIC) and Kaniva (West VIC) were chosen as case study.  Rainfall was classified 
according to El Nino, La Nina and Neutral years of ENSO, and also positive and negative years of IOD. It 
was discovered that categorizing rainfalls based on the years of ENSO and IOD do not have significant effect 
on its relationship with these climate modes.  It was also found that the Pearson correlation coefficient 
between ENSO and Buchan in east Victoria is very weak; for Malmsbury and Kaniva ENSO indicators are 
showing higher correlations compared to Buchan. DMI effect is stronger in these two regions as well.  

Using the non-classified rainfalls, correlation coefficient between spring rainfall at year n and Decn-1-Augn 

monthly values of ENSO and IOD indicators (Nino3.4, SOI and DMI) were calculated (“n” being the year 
for which spring rainfall is being predicted); It was discovered that only the three months of June, July and 
August of Nino3.4, SOI and DMI have significant correlation with spring rainfall. Several multiple 
regression models were investigated using lagged ENSO and IOD as potential predictors of spring rainfall; 
the models that satisfied the limits of statistical significance and multicollinearity were used to forecast 
spring rainfall three consecutive years in advance. Multiple regression analysis showed poor results in 
regards to forecasting ability in east Victoria, however it was able to forecast spring rainfall three consecutive 
years in advance for central and west Victoria with a correlation of 0.48 and 0.67 respectively. 

Keywords: Rainfall, El Nino Southern Oscillation (ENSO), Indian Ocean Dipole (IOD), multiple 
regression model 
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1. INTRODUCTION 

Rainfall is a product of complex global atmospheric phenomena and long-term prediction of rainfall remains 
a challenge for many years. Forecasting rainfall several months or seasons in advance can be beneficial for 
the management of water resources. Australian rainfall is highly variable both in space and time. It is 
believed that Australian rainfall is affected by several major climate patterns. The major drivers bringing 
rainfall over Australia which have been investigated by many researchers are, El Nino Southern Oscillation 
(ENSO), Indian Ocean Dipole (IOD) and Southern Annular Mode (SAM) (Kirono et al., 2010). Many 
researchers have conducted different studies in different parts of Australia trying to establish the relationship 
between these climate modes and Australian rainfall. Some of these studies cover the whole Australia 
(Kirono et al., 2010; Meneghini et al., 2007; Risbey et al., 2009) while the others are more focused on a 
specific region like South West Western Australia (SWWA) (England et al., 2006; Ummenhofer et al., 2008), 
South Australia (Evans et al., 2009; Nicholls, 2010), South East Australia (SEA) and East Australia (Murphy 
and Timbal, 2008; Verdon et al., 2004). Other than the work of Keim and Verdon-Kidd (2009) which 
analysed the combined impact of ENSO and SAM on Victorian rainfall, other studies focused only on 
finding the relationship between rainfall and a single driver. According to Verdon et al. (2004) compared to 
other parts of Australia ENSO signals are relatively weak for Victoria. This study will further investigate this 
matter.  On the other hand, the majority of studies on ENSO-rainfall relationships did not consider the effect 
of lagged climate modes on future rainfall predictions. According to Schepen et al. (2012) a strong 
relationship between simultaneous climate modes and rainfall does not essentially mean that there is a lagged 
relationship as well. Of the few studies focusing on the lagged climate–rainfall relationship one can mention 
Mekanik and Imteaz (2013), Abbot and Marohasy (2012), Drosdowsky and Chambers (2001), Kirono et al. 
(2010), Mekanik and Imteaz (2012), Schepen et al. (2012) and Mekanik et al. (2013).  Thus, the objective of 
this study is to investigate the relationship of combined ENSO and IOD lags on Victoria’s spring rainfall, as 
a case study. To achieve this objective multiple regression analysis (MR) is used.  Three rainfall stations in 
Victoria, each representing a region is chosen as the case study. Model outputs were aimed to be 
deterministic forecast as opposed to probabilistic forecast.  

2. METHOD AND DATA 

2.1         Data 

Historical monthly rainfall data was obtained from the Australian Bureau of Meteorology website (BoM) 
(www.bom.gov.au/climate/data/). Three rainfall stations in Victoria, each representing a region is chosen as 
the case study (Figure.1). The stations were chosen based on their recorded length of data and having fewer 
missing values.  Spring (September - November) rainfalls in millimeters were obtained from monthly rainfall 
data from January 1900 to December 2009.  

El Nino Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) were chosen as rainfall drivers based 
on the previous studies (Kirono et al., 2010); ENSO is represented by two different types of indicators: the 
Southern Oscillation Index (SOI) which is a measure of Sea Level Pressure (SLP) anomalies between Darwin 
and Tahiti; and the Sea Surface Temperature (sst) anomalies in equatorial Pacific Ocean noted as Nino3 (5oS 
– 5oN, 150o– 90oW), Nino3.4 (5o S – 5oN, 170o – 120oW) and Nino4 (5oS – 5oN, 160o – 150oW) (Risbey et al., 
2009). Nino3.4 and SOI which are the common indices in identifying El Nino/ La Nina years are used as 

ENSO indicators in this study. IOD is also a 
coupled ocean-atmosphere phenomenon in the 
equatorial Indian Ocean (Saji et al., 1999). A 
measure of IOD is the Dipole Mode Index (DMI) 
which is the difference in average SST anomalies 
between the tropical Western Indian Ocean (10oS - 
10oN, 5oO - 70oE) and the tropical Eastern Indian 
ocean (10oS - Equator, 90o - 110oE) (Kirono et al., 
2010). The climate indices data were obtained from 
Climate Explorer website (http://climexp.knmi.nl/). 
The data were divided in to two sets, from 1900-
2006 for calibration of the models and the three 
years 2007-2009 were selected as the out-of-
sample set to evaluate the generalization ability of 
the developed models. The data were normalized 
between the range of 1 and 0 using Eq. (1).  

 
 
Figure 1. Map of the study area 
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The models were evaluated using Mean Square Error (MSE), Mean Absolute Error (MAE), and Pearson 
correlation coefficient (r) which are widely used for prediction purposes; the models were further assessed 
using Willmott index of agreement (d) (Eq. 2) d = 1 − ( ൣ∑|୷ෝ౟ି୶౟|మ൧ሾ∑(|୷ෝ౟ି୶ഠഥ |ା|୶౟ି୶ഠഥ |)మሿ)                                                                                                                        (2) 

 
where,  yො୧ is the predicted value of the ith observation and x୧ is the ith observation. The closer the (d) is to 
one the better the model has fitted the observations (Willmott, 1982). 

2.2 Preliminary analysis 

El Nino Southern Oscillation (ENSO) consists of two phases of warm SST anomalies (El Nino) and cold SST 
anomalies (La Nina) in the Equatorial Pacific Ocean; it is believed that El Nino brings below-average rainfall 
to Australia while La Nina is associated with above-average rainfall. IOD also has two phases of positive and 
negative IOD associating with below and above average rainfall respectively.  

Meyers et al. (2007) classified the years of 1878-1998 into three ENSO categories (El Nino/ La Nina/ 
Neutral) and autonomously three IOD categories (IOD positive/IOD negative/Neutral); Later Umenhofer et 
al. (2009) extended the categorization to recent years. In this study, rainfall is categorized according to the 
years of ENSO and IOD based on the work of Umenhofer et al. (2009).  The relationship between concurrent 
spring rainfall and the climate modes (ENSO/IOD) as well as the lag relationship between these phenomena 
are investigated; Pearson correlation was used to examine the strength and significance of the relationships. 
Table 1 shows the correlation coefficient of concurrent non-categorized spring rainfall with ENSO and IOD 
for three stations.  It can be seen from this table that the correlation between ENSO and Buchan in east 
Victoria is very weak (r=-0.25). For Malmsbury and Kaniva ENSO indicators are showing higher 

correlations compared to Buchan. Also, DMI 
effect is stronger in these two regions as well.  

Rainfall anomalies were calculated based on 
the categorization of Umenhofer et al. (2009) 
(Figure 2).  The significance of median being 
different from zero is calculated using the 
Wilcoxon Signed Rank test (Table 2).  

It can be seen from this table that  for Buchan 
none of the categorization is showing 
significant difference on rainfall; meaning 
that different phases of ENSO/IOD does not 

have a significant effect on the amount of rainfall received in this region. For Malmsbury only the phases of 
El Nino-IOD positive, El Nino, IOD positive and La Nina phases have significant effect on rainfall; It can be 
seen that except La Nina the other phases are associated with lower than average rainfall for this region.  For 
Kaniva, IOD positive and negative have a significance level of 0.050 which is acceptable but still high and El 
Nino has a significance level of 0.021. In General it can be concluded that the phases associated with drier 
than normal seasons affect rainfall more than the wet phases of ENSO and IOD; However, more stations 
need to be investigated in order to generalize this outcome for Victoria. 

 

Table1. Pearson correlation (r) of spring climate indices 
 and spring rainfall (1900-2006) 

Indices Buchan(East) Malmsbury(Centre) Kaniva(West) 

Nino34(S-

O-N) 

-0.25b -0.39a -0.40a 

SOI(S-O-N) 0.17 0.45a  0.43a 

DMI(S-O-N) -0.22b -0.44a -0.44a 

a: correlation is significant at the 0.01% level 
b: correlation is significant at the 0.05% level 

Table 2. Testing for significant difference of median from zero (Wilcoxon Signed Rank test) 

Climate phase EN,IOD+ EN IOD+ Neutral IOD- LN LN,IOD- 
Buchan 0.063 0.213 0.638 0.851 0.327 0.715 0.499 

Malmsbury 0.043* 0.013* 0.003* 0.674 0.401 0.046* 0.063 
Kaniva 0.091 0.021* 0.050* 0.761 0.050* 0.192 0.063 
*The significance level is 0.05 
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Figure 2. Rainfall anomalies for the different ENSO/IOD categories for east, centre and west VIC 

2.3    Multiple regression analysis 

Multiple regression analysis (MR) is a linear statistical technique that allows for finding the best relationship 
between a variable (dependent, predicant) and  several other variables (independent, predictor) through the 
least square method. Multiple regression models can be presented by the following equation: 

Y=a + b1X1 + b2X2+c                     (3) 
where, Y is the dependent variable (spring rainfall), X1 and X2 are first and second  independent variable 
respectively (lagged ENSO and IOD indicators), b1 and b2 are   model coefficients of first and second  
independent variable respectively, a is constant, and c is  the error.  

Verifying the multicollinearity is an important stage in MR modeling. Multicollinearity occurs when the 
predictors are highly correlated which will result in dramatic change in parameter estimates in response to 
small changes in the data or the model. The indicators used to identify multicollinearity among predictors are 
tolerance (T) and variance inflation factor (VIF): Tolerance = 1 − Rଶ , VIF = ଵ୘୭୪ୣ୰ୟ୬ୡୣ  ,    Rଶ = ୗୗୖୗୗ୘ = 1 − ୗୗ୉ୗୗ୘                (4)                            

where, Rଶ is the coefficient of multiple determination, SST is the total sum of squares, SSR is the regression 
sum of squares and SSE is the error sum of squares.  According to Lin (2008) a tolerance of less than 0.20–
0.10 or a VIF greater than 5–10 indicates a multicollinearity problem. 

Analysing the pattern of residuals is another method of evaluating the goodness-of-fit of the models. If any 
autocorrelation exists among the residuals then the models have not captured all the relationship there is 
between the inputs and the output; The criterion that can evaluate this is the Durbin-Watson (DW) test, which 
tests for serial correlations between errors. The test statistics have a range of 0 to 4, according to Field (2009) 
values less than 1 or greater than 3 are definitely matter of concern. 

3. RESULTS AND DISCUSSION 

In this study correlation between spring rainfall at year n and Decn-1-Augn monthly values of ENSO and IOD 
indicators (Nino3.4, SOI and DMI) were calculated (“n” being the year for which spring rainfall is being 
predicted); It was discovered that only the three months of June, July and August of Nino3.4, SOI and DMI 
have significant correlation with spring rainfall (Table 3); This result is in accordance to the findings of 
Cheiw et al. (1998) and Verdon et al. (2004), substantiating that not only  the highest correlations between 
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rainfall and climate indicators are obtained up to three month lags i.e. there is no further significant 
relationship after lag 3;  

Table 3. Correlation of spring rainfall and lagged climate indices 

 Nino34(Jun) Nino34(Jul) Nino34(Aug) SOI(Jun) SOI(Jul) SOI(Aug) DMI(Jun) DMI(Jul) DMI(Aug) 

Buchan -0.22b -0.26a -0.24b -0.20b --- --- -0.30a --- --- 

Malmsbury -0.22b -0.22b -0.29a --- 0.32a 0.30a --- -0.30a -0.31a

Kaniva -0.32a -0.32a -0.36a 0.23b 0.33a 0.31a --- -0.30a -0.31a

a: correlation is significant at the 0.01% level 
b: correlation is significant at the 0.05% level 

ENSO-IOD input sets were organized based on these months as potential predictors of spring rainfall for 
multiple regression analysis. F-test and t-test was conducted to evaluate the significance level of the models 
and the regression coefficients; among the constructed models the ones that did not violate the limits of 
statistical significance was selected, the models with lower error were chosen as the best model for each 
station. The regression coefficients, variance inflation factor (VIF), Durbin-Watson statistics (DW) and the 
Pearson correlation coefficient (r) of the best models are shown in Table 4 . It can be seen from this Table 
that VIFs for the selected models are near one, i.e. there is no multicolinearity among the predictors; also, the 
DW statistics is showing that the residuals of the models have no autocorrelation confirming the goodness-
of-fit of the models.  Nino3.4-DMI based models proved to be statistically significant and having better 
forecasting ability than SOI-DMI models for Victoria, with a Pearson r of 0.35 for Buchan, 0.36 for 
Malmsbury and 0.39 for Kaniva. Table 5 shows the MSE, MAE and Pearson correlation (r) of the best MR 
models for the three regions. It can be seen from Table 5 that the errors are relatively low for all the stations.   

Table4. Summary of the best regression models 

Station Models Co-
efficient 

  r VIF DW 

Const. Ni34(Jun) Ni34(Jul) Ni34(Aug) DMI(Jun) DMI(Jul) DMI(Aug)    

Buchan Ni34(Jul)-
DMI(Jun) 

0.51 --- -0.17 --- -0.23 --- --- 0.35 1.10 2.1 

Malms-
bury 

Ni34(Aug)-
DMI(Jul) 

0.55 --- --- -0.20 --- -0.22 --- 0.36 1.12 1.9 

Kaniva Ni34(Jun)-
DMI(Jul) 

0.67 -0.32 --- --- --- -0.27 --- 0.39 1.10 2.0 

 
After calibrating and validating the models, in order to evaluate the generalization ability of the developed 
MR out-of-sample tests were carried out on the years 2007-2009 (Table 6). It can be seen that MR model is 
showing very poor generalization ability for Buchan (r= -0.90), however the ability of MR models to forecast  
out-of-sample sets  improves for Malmsbury in  central Victoria and Kaniva in west Victoria (r=0.48 and 
0.67 respectively).  While Pearson correlation shows how well the models are following the trend of the 
actual observations, Willmott index of agreement “d” shows how well the models are fitting the observations; 
the closer the value of “d” is to one the better is the model accuracy (Table 6). Figures 3 to 5 show the 
models developed for the three stations. In general regression models are showing an underestimation of the 

actual observations.   

 
Table 5. Performance of the regression models 

Station r MSE MAE 

Buchan 0.35 0.026 0.171 

Malmsbury 0.36 0.030 0.140 

Kaniva 0.39 0.041 0.163 
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4. CONCLUSION 

This study focused on investigating the 
use of combined lagged El Nino Southern 
Oscillation (ENSO) and Indian Ocean 
dipole (IOD) as potential predictors of 
spring rainfall. Three regions (east, centre 
and west) of Victoria were chosen as case 
study. Nino3.4 and Southern Oscillation 
Index (SOI) were used as ENSO 
indicators and Dipole Mode Index (DMI) 
was chosen as IOD indicator.  

The effect of the phases of ENSO and 
IOD on spring rainfall was investigated by 
categorizing rainfall based on the phases 
of ENSO/IOD, Wilcoxon Signed Rank 
test was applied to test the significance of 
these effects. It was discovered that in the 
three stations considered El Nino and IOD 
positive affect rainfall more than La Nina 
and IOD negative. 

The Pearson correlation coefficients of 
past values of the climate indices with 
spring rainfalls for the 3 stations were 
calculated; it was discovered that only the 
three months of June, July and August of 
Nino3.4, SOI and DMI have significant 
correlation with spring rainfall and these 
correlations are very weak. Nino3.4-DMI 
and SOI-DMI input sets were organized based on these months as potential predictors of spring rainfall for 
MR analysis. Among the several developed models the ones that did not violate the limits of statistical 
significance and multicollinearity and had lower model error were used for prediction purposes. The models 
were tested on out-of-sample sets. It was found that generalization ability of MR models for east Victoria is 
very poor compared to the other two regions. It was discovered that MR model is showing very poor 
generalization ability for Buchan (r~ -0.90), however the ability of MR models to forecast  out-of-sample sets  
improves for Malmsbury in  central Victoria and Kaniva in west Victoria (r=0.48 and 0.67 respectively). By 
taking some care, multiple regression has the ability of forecasting rainfall based on lagged climate modes.   
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