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Abstract: Assessing vulnerability to climate change allows policymakers to prioritize policy interventions 
and better allocate resources.  Climate Change Vulnerability Assessment (CCVA) can play an important role 
in developing long-term environmental and infrastructure plans. Typically, a CCVA exercise combines 
knowledge from multiple disciplines (e.g., climate science, public health, social science, infrastructure 
systems, economics) in order to build  models of the vulnerability to a climate-related stress of a valued 
attribute (e.g., health, prosperity, security) of a socio ecological system (SES) (e.g., local government area, 
councils, counties). In indicator-based vulnerability assessments (IBVA), indicators are adopted as proxy 
measures of processes generating vulnerability. However, some of the widely recognized challenges of IBVA 
have been the absence of a mathematically robust framework that can combine information from different 
knowledge domains, while taking into account the partial compensation of loss/gain between indicators, non-
linearities, and tipping points. In one of our previous papers we showed that even though their goals are 
fundamentally different, Multi-Criteria Decision Analysis (MCDA) and IBVA have the same structural 
features. Hence, we proposed an aggregation framework for IBVA using insights from the older and more 
mature field of MCDA (El-Zein and Tonmoy, 2013a) . The goal of this paper is to extend this framework in 
order to define and deal with non-linear relationships and threshold effects commonly occurring in IBVA. 
 We first identify different sources of non-linearity present in the context of IBVA. We distinguish 
between a fundamental nonlinearity (dependence of vulnerability on magnitude of stress), a deductive 
nonlinearity (where a deductive or mechanistic model is required to identify the relationship between a set of 
indicators and vulnerability) and an intuitive nonlinearity (where the same relationship is characterized as 
non-linear through inductive arguments by stakeholders and/or experts). Second, we build a new framework 
called the Sydney Environmental Vulnerability Assessment (SEVA) by introducing harm as a concept that 
replaces or mediates the relationship between the indicator and the vulnerability it represents. Harm can be 
conceived of as a more concrete, less abstract form of vulnerability that is more amenable to quantification. 
A harm criterion then, like an indicator, acts as a proxy for a process generating vulnerability. However, a 
harm criterion allows us to achieve two key objectives: a) to relax the conditions concerning linearity, and b) 

to separate deductive and 
intuitive nonlinearities in 
order to better deal with 
both of them.  
 SEVA conducts 
aggregation of harm criteria 
using an outranking 
framework. In a previous 
paper, we showed that 
outranking methods, 
developed in decision 

science, are better suited to IBVA because their theoretical requirements are less stringent than multi-
attribute utility theory (MAUT) approaches, and do not require perfect knowledge of preference structures 
(El-Zein and Tonmoy, 2013a). Outranking procedures are especially powerful in dealing with partial 
compensation and fuzzy relationships and, through SEVA (Figure 1), we extend the capability of an 
outranking procedure (ELECTRE III) to deal with the nonlinearities defined above. We simulate various 
combinations of nonlinearities and partial compensation through specific definitions of thresholds of 
differences (which are basic parameters of fuzziness in outranking algorithms). We demonstrate the use of 
SEVA by applying it to a hypothetical model of vulnerability of beach residents to sea level rise and its 
associated processes. 

Keywords: vulnerability assessment, climate change, aggregation, nonlinear, outranking, mathematical 
framework  

Figure 1: Overall architecture of SEVA 
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1. INTRODUCTION 

The Earth’s climate system includes the natural spheres (e.g., atmosphere, biosphere, hydrosphere and 
geosphere), the anthropo-sphere (e.g., economy, society, culture), and their interactions (Schellnhuber, 1999). 
These interactions are one of the main sources of non-linear behaviour and our present inability to 
characterize them is a major source of uncertainty in our attempts to predict the effects of global 
environmental change (Rial et al., 2004).  Climate change vulnerability assessment (CCVA) is an attempt to 
understand these interactions in a way that helps a systematic incorporation of climate futures in planning 
(Füssel, 2007). CCVA involves assessing the risk to populations, economies, and engineering infrastructures 
from exposure to increased climate hazards by combining the physical dimensions of risk exposure with the 
socio-economic and institutional processes that moderate the impacts of the hazards in question. A risk-
hazard approach combines the Global Circulation Models (GCM) projections with non-linear mechanistic 
bio-physical or bio-chemical models (e.g., hydrological, epidemiological, atmospheric) to identify regional 
and local impacts. However, extending this approach to include the socioeconomic dimensions of risk and 
identify all important forms of nonlinearity (including those characterising the interaction between these two 
systems) remains a challenge for CCVA.  

Indicator-based vulnerability assessments (IBVA) have been widely used because they offer a relatively 
simple way of quantifying different components of the risk, bio-physical, institutional and socio-economic 
(Füssel, 2007, Hinkel, 2011). However, IBVA, as typically conducted, suffer from multiple theoretical and 
methodological shortcomings. First, our imperfect knowledge of the interaction of bio-physical and socio-
economic systems makes it difficult to identify and use measurable proxy indicators that can represent all the 
significant processes generating vulnerability. Second, developing aggregation principles for indicators is 
challenging because of the multiplicity of knowledge domains (e.g., climatic, social, economic, engineering, 
institutional), data types (continuous, discrete and ordinal variables), forms of relationships between 
indicators and vulnerability (linear and non-linear), as well as different possible relationships of 
compensation and non-compensation between the indicators, present in these analyses (El-Zein and Tonmoy, 
2013a). A majority of the IBVA literature uses simple aggregation approaches that are based on Multiple 
Attribute Utility Theory (MAUT) (e.g., simple additive or multiplicative aggregation). Although MAUT-
based additive aggregation is a powerful tool, its strict theoretical requirements (e.g., indicator additive 
independence, complete knowledge on the system etc) are hardly ever met in the context of IBVA (El-Zein 
and Tonmoy, 2013a). Moreover, a number of assumptions are typically made in IBVA studies that use 
MAUT—a linear, monotonic relationship between indicator and vulnerability; complete compensation 
between indicators—none of which usually hold in reality. 

In a previous paper, we showed that even though their goals are fundamentally different, Multi Criteria 
Decision Analysis (MCDA) and IBVA have the same structural features and therefore we developed an 
aggregation framework for IBVA borrowing insights from MCDA (El-Zein and Tonmoy, 2013a). We 
showed that outranking methods built in decision science, are better suited for IBVA because they provide a 
more structured approach to the challenges mentioned above, and proposed an outranking based framework 
for IBVA (El-Zein and Tonmoy, 2013a, Tonmoy and El-Zein, 2012). Outranking procedures are especially 
powerful in dealing with compensation challenges and fuzzy relationships, but in their present form cannot 
accommodate different forms of non-linearity that might occur in the context of IBVA. In this paper, we 
define different types of non-linearities relevant to IBVA and propose a new outranking-based framework for 
IBVA that incorporates and represents these non-linearities.    

2.0 DIFFERENT FORMS OF NON-LINEARITIES IN IBVA 

We begin with a general mathematical framework for IBVA we developed earlier. This framework operates 
with a multi-dimensional definition of vulnerability and takes into account the impact of adaptive events. 
Vulnerability assessment aims to develop some measure, quantitative or qualitative, of the susceptibility to 
damage of, or damage likely to be inflicted on the valued attribute of an SES, as a result of its exposure to 
one or more climate stresses. For the purpose of the discussion below, damage is denoted by D, vulnerability 
by V, and the magnitude of the climate stress in question by M. It is reasonable to assume that as the 
magnitude M of the climate stress increases so does the damage D. This framework defines vulnerability as 
the ratio of damage to magnitude, i.e. as the marginal rate of damage relative to the magnitude of the stress 
(El-Zein and Tonmoy, 2013b), hence: ܦ =  (1) ܯ܄
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where V is a positive number (for clarity, D and M are represented in italics and the slope connecting them, 
i.e. vulnerability, in bold-faced font, throughout). In some cases V is largely independent of M and (1) simply 
reflects a linear relationship between D and M. For example, within a given range, the extent of physical 
damage inflicted on houses in a “do nothing” scenario may be roughly proportional to the level of sea rise 
that caused it, i.e. V does not depend on M. In reality such relationships are seldom linear because more often 
than not, D is a non-linear function of M. Rivers bursting their banks and sea waves breaching beach 
fortifications are examples in which a threshold effect generates a non-linear relationship between D and M 
(Table 1). It is possible to represent such non-linearity by introducing a dependence of V on M: 

D=V(M)M  (2) 

Hence, it is now possible to speak about assessing vulnerability to a given magnitude of stress, i.e. 
developing some measure of V(M) at a given M. We call this non-linearity (i.e. dependence of V on M), the 
fundamental non-linearity, to distinguish it from other forms of non-linearities that will be introduced below. 
Provided D is differentiable over M, it is possible to generalise from equation (2) and define vulnerability as: (ۻ)܄ = ૒۲૒(3)  ۻ 

For more details on this mathematical framework please refer to El-Zein and Tonmoy (2013b). 

Let sk={s1, …., sn} be a set of n comparable SESs which need to be ranked according to the vulnerability of a 
valued attribute (e.g., health, economic well-being, productivity etc.) to one or more climate hazards (e.g., 
increase in average temperatures, rise in sea level, increased frequency of flooding etc.). IBVA expresses the 
vulnerability as functions of measurable indicators. Hence, above equations applied to a specific socio-
economic system (SES) k becomes: ܓ܄ሬሬሬሬԦ(ۻ) = f୩(Iଵ୩, Iଶ୩, Iଷ୩, … ) (4) 

In IBVA, each indicator is ideally chosen so as to represent a process generating vulnerability, based on 
intuitive or deductive reasoning. Typically, our degree of knowledge of the relationship between an indicator 
and the vulnerability it represents is highly variable and as a minimum, can be summed up by:  f୩Iଵ୩, Iଶ୩, Iଷ୩, … (5) 

However, this simply reiterates the reason for which these indicators were selected in the first place. A 
simple, if dangerous, way out of this impasse is to make the following assumption:  

f୩ =෍w୨I୨̅୩୫
୨ୀଵ  (6) 

the bar on variable Ijk denotes normalised indicators; and wj is a weight for the jth indicator. Normalisation 
can be conducted in a number of different ways; commonly IBVA studies use a normalization method that 
leads to a new variable which ranges between 0 and 1. Equation (6) essentially generates a function based on 
multi-attribute utility theory (MAUT) as a form of aggregation of the indicators. This immediately presents 
us with a problem related to three assumptions underlying equation (6): a) indicators are linearly 
independent; b) all indicators are commensurable with each other, i.e. a deficiency in one indicator can be 
made up for with an excess in any other indicator, with the exact rate of exchange between two indicators 
determined by the choice of respective weights (the indicators incommensurability problem); and c) 
vulnerability is a linear monotonic function of indicators (the deductive non-linearity problem). 
Unfortunately, these assumptions do not usually hold in IBVA. Furthermore, in the absence of deductive 
arguments for characterising the exact relationship between a set of indicators and vulnerability, stakeholders 
and experts are sometimes able to build an intuitive form of nonlinearity based on their knowledge of the 
system in question. An example of this form of nonlinearities is given in the last row of table 1. While this 
approach is obviously less valid than a deductive one, it still carries information that the analysis ought to 
take into consideration. 

An alternative to equation (6) is a Condorcet approach which proceeds by pairwise comparisons of SESs, 
rather than building a global utility function. In an earlier publication, we showed that outranking methods, 
based such an approach, are better suited for dealing with the challenges of partial compensation and data 
uncertainty present in IBVA (El-Zein and Tonmoy, 2013a). Outranking methods have been used widely in 
the context of environmental decision making (Roy, 1968, Hokkanen and Salminen, 1997, El Hanandeh and 
El-Zein, 2010, El-Zein and Tonmoy, 2013a, Linkov et al., 2006). Hence, we proposed an IBVA framework 
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which aggregates indicators by measuring the truth of the statements “a is more vulnerable than b”, “b is 
more vulnerable than a” or “a and b are equally vulnerable”, where a and b are two SESs.  

In what follows, we extend this framework to deal with the different forms of nonlinearity identified above. 
We do so by introducing the concept of harm, as a mediator between indicators and the vulnerability they 
represent. 

Table 1: Types, sources and examples of non-linearity in IBVA 
Types of 

non-linearity 
Source Example 

Fundamental 
non-linearity 

Dependence of V 
on M (Equation 1) 

Rivers bursting their banks and sea waves breaching beach fortifications are examples in 
which a threshold effect generates a non-linear relationship between extent of damage and 
magnitude of hazard. 

Deductive 
non-linearity 

Mechanistically 
characterised 
relationship 
between a set of 
indicators and 
vulnerability 

Infrastructures are often interdependent and disruption to one usually cascades through the 
network. As an example, water supply infrastructures are dependent on the power supply, and 
therefore disruption to the power supply infrastructure during a storm event may lead to 
disruption of water supply to houses. Therefore, vulnerability of households to a storm event 
depends on a complex interaction between a set of infrastructure parameters; this interaction 
can be mechanistically established using simulation models (Tonmoy and El-Zein, 2013). 

Intuitive non-
linearity 

Weakly 
characterized 
relationship 
between an 
indicator and 
vulnerability 

Based on empirical evidence from social sciences, it is assumed that the adaptive capacity of 
a community is partly reflected by its collective income and assets—the wealthier it is, the 
higher its adaptive capacity and the less vulnerable it is to the hazard in question. However, it 
is very difficult to characterise the exact relationship between wealth W and adaptive capacity 
Ac. On the other hand, it is reasonable to assume that small differences in wealth do not 
translate into differences in adaptive capacities or vulnerabilities (Reid et al., 2009) 

 

3.0 THE SYDNEY ENVIRONMENTAL VULNERABILITY APPROACH (SEVA) 

Harm, as suggested by Hinkel (2011), can be conceived of as a more concrete, less abstract form of 
vulnerability that is more amenable to quantification. In conventional IBVA studies, an indicator selected to 
represent vulnerability is taken to satisfy the following three conditions:  

a) it represents a process 
generating vulnerability;  
b) it holds a linear, 
monotonic relationship 
with vulnerability;  
c) it is either readily 
available or computable.  

In SEVA we replace 
indicators with harm 
criteria. A harm criterion 
must satisfy the following 
conditions: 

1. It represents a process 
generating vulnerability;  
2. It holds either a linear, 
monotonic relationship or 
an intuitively non-linear 
relationship with vulnerability;  
3. It is either readily available or computable; computable harm criteria may be the output of deductively 
non-linear relationships or models whose input is a set of readily available indicators. 

A harm criterion then, similar to an indicator, acts as a proxy for a process generating vulnerability. 
However, a harm criterion, as opposed to an indicator, allows us to achieve two key objectives in the process 
of building a vulnerability model: a) to relax the conditions concerning linearity; b) to separate deductive and 
intuitive non-linearity in order to better deal with both of them. Figure 2 shows these features graphically. It 
highlights the fact that, in SEVA, when the harm criterion is readily available (and no deductive non-linearity 
is present), there is no need for indicators.  

To illustrate how harm criteria can be used in vulnerability assessments, we present a simplified model that 
aims to rank the vulnerability of a number of coastal beaches to a rise in sea level. The model shown in table 

Figure 2: The harm concept 
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2 is not a complete and accurate representation of vulnerability; it is only illustrative, used to demonstrate key 
relationships between harm criteria and vulnerability. H1 is the damage cost (damaged private properties) due 
to a disaster event associated with sea level rise (SLR) (e.g. storm event), in a do nothing scenario. H1 can be 
estimated through a hazard line study that identifies at-risk properties and infrastructure near the coast, based 
on mechanistic models (e.g., coastal hydrodynamic models, soil foundation mechanics, structural integrity). 
Similarly, H2 is an estimate of the likely number of disrupted households as a result of an interruption to 
services of the public infrastructure that falls inside the hazard line. This can be measured using a system 
dynamics model that simulates infrastructure interdependency (Tonmoy and El-Zein, 2013). Both H1 and H2 
are hence derived on the basis of deductive arguments and are the outcome of deductively non-linear 
relationships. On the other hand, H3, an income-based proxy measure of adaptive capacity, is usually readily 
available as primary data from demographic and population census databases.   

Finally, the model assumes that H2 is intuitively-linear as it holds a linear relationship to vulnerability—while 
H1 and H3 are intuitively non-linear. This is to say that, for example, small differences in H3 (income) do NOT 
translate into differences in vulnerability and, beyond a given threshold, bigger differences in income no 
longer translate into bigger differences in vulnerability. 

 
Table 2: Hypothetical 3-harm criteria model of vulnerability to sea level rise (D-NL: Deductive Non-Linearity; I-NL: 
Intuitive Non-Linearity; COMP: compensation) 

H Description Dira Process D-NL I-NL COMP 

H1 Damage cost of private properties ↑ 
Densely developed and exposed beaches 
are more at risk 

Yes Yes Total 

H2 
Total number of affected households due 
to disruption of public infrastructures 
during a disaster (e.g., storm event) 

↑ 
Disruption to public infrastructures 
affects its users (households) adversely  

Yes No Partial 

H3 Weekly median income of the households ↓ 
Lack of access to adaptive resources 
leads to more risk 

No Yes Partial 

a :Dir= Direction: ↑ (↓)  indicates that vulnerability increases (decreases) with increasing harm. 

It is now possible to express equation (2) in terms of harm criteria rather than indicators:  ܓ܄ሬሬሬሬԦ(ۻ) = f୩(Hଵ୩, Hଶ୩, Hଷ୩, … ) (7) 

where Hik is either given or can be computed as a non-linear function of a set of indicators I1k, I2k, I3k..... or 
the outcome of a complex mechanistic model, which may contain thresholds and tipping points, with a set of 
indicators as input. By starting from equation (7), which we now take as fully representing the vulnerability 
of the system, for each pair of SESs a and b, we can define three different categories of relative vulnerability: 

1. b is indifferent to a according to harm criterion Hi if and only if |H୧ୠ − H୧ୟ| ≤ q୧, where qi≥0 is the 
relative vulnerability indifference threshold for harm criterion Hi; 

2. b is strictly more vulnerable than a according to harm criterion Hi if and only if H୧ୠ − H୧ୟ ≥ p୧, where 
pi≥0 is the relative vulnerability threshold for harm criterion Hi (pi≥qi); 

3. b is weakly or proportionately more vulnerable than a according to harm criterion Hi if and only if q୧ < ୧ୠܪ − H୧ୟ < p୧. 
4. b is at least as vulnerable as a, if one criterion exists for which H୧ୠ − H୧ୟ > v୧, regardless of the 

performances of a and b on all other harm criteria, where vi≥pi is called dominance threshold for harm 
criterion Ii. 

Hence, vi sets a limit beyond which a disparity in the values of a harm criterion for 2 SESs is so great that the 
resulting difference in vulnerability cannot be compensated for by reverse disparity in another harm criterion. 
In other words, compensation is either partial or completely absent. The values of each harm criterion for 
each SES are assembled in what we call a vulnerability matrix (each row representing a harm criterion and 
each column representing an SES). Converting the vulnerability matrix into a ranking of SESs according to 
their vulnerability to a climate change hazard can be made using any available outranking procedures. We 
use the ELECTRE-III outranking method (Roy, 1968, Tonmoy and El-Zein, 2012). Figure 1 shows the overall 
architecture of SEVA framework. 

4.0 LIMIT CONDITIONS FOR THRESHOLDS OF DIFFERENCE 

In outranking methods, thresholds of differences (qi, pi and vi) dictate the extent of intuitive non-linearity and 
compensation through concordance and discordance matrices. In SEVA, we distinguish between eight 
possible types of harm criteria depending on the presence (or not) of deductive nonlinearity, intuitive 
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nonlinearity and partial compensation. Table 3 shows the limit conditions for thresholds of difference needed 
to generate the different types of harm criteria. For more details on the thresholds of differences and how 
they can be estimated, the reader is referred to El-Zein and Tonmoy (2013a), Tonmoy and El-Zein (2012). 

Table 3: Limit cases of thresholds of difference for combinations of nonlinearity and partial compensation (qi≤pi≤vi) 
 Intuitively Linear 

and 
Fully-Compensating 

Intuitively Non-Linear 

Full 
Compensation

Full or Partial 
Compensation

Full, Partial or No 
Compensation

Deductively 
Linear 

Type 1 
Hik 

qi=0 
max(Hik-Hij) (k=1,n; 

j=1,n)≤pi≤vi 

Type 2 
Hik 

qi≥min|Hik-Hij| (k=1,n; j=1,n) 
max(Hik-Hij) (k=1,n; 

j=1,n)≤pi≤vi 

Type 3 
Hik 

qi≥0 
pi<max(Hik-Hij)(k=1,n; 

j=1,n)≤vi 

Type 4 
Hik 

qi≥0; pi≥0 
vi≤max(Hik-Hij)(k=1,n; j=1,n) 

Deductively 
Non-Linear 

Type 5 
Hi=f(I1,I2,...) 

qi =0 
max(Hik-Hij) (k=1,n; 

j=1,n)≤pi≤vi  

Type 6 
Hi=f(I1,I2,...) 

qi≥min|Hik-Hij| (k=1,n; j=1,n) 
max(Hik-Hij) (k=1,n; 

j=1,n)≤pi≤vi 

Type 7 
Hi=f(I1,I2,...) 

qi≥0 
pi<max(Hik-Hij)(k=1,n; 

j=1,n)≤vi 

Type 8 
Hi=f(I1,I2,...) 
qi≥0; pi≥0 

pi<vi<max(Hik-Hij)(k=1,n; 
j=1,n) 

 

5. AN ILLUSTRATIVE EXAMPLE: VULNERABILITY TO SEA LEVEL RISE USING SEVA 

Table 4 shows the results of SEVA analyses conducted on the model shown in Table 2. The SESs in this case 
are four hypothetical city districts of similar scales. We compare the vulnerabilities of the well being of 
residents of these districts to the effects of a rise in sea level and its associated processes (e.g., long term 
erosion, increased flooding etc.), assuming they are adequately reflected by the three harm criteria shown in 
Table 2. Starting from a scenario where all the relationships are linear and full compensation between harm 
criteria is available (case 1), we generate new scenarios (cases 2 to 4) by gradually introducing different 
forms of intuitive and deductive non-linearity and partial compensation. It can be seen in Table 4 that, in case 
1, SES4 is least vulnerable primarily because of its low damage cost and smaller number of affected 
households. SES1, SES2 and SES3 are equally vulnerable as the differences between all three criteria for 
these SESs are in balance in the absence of any indifference thresholds (e.g., SES1 is most vulnerable based 
on H1, SES3 based on H2, and SES2 based on H3). In case 2, the introduction of an indifference threshold of 
q3=$90 for H3 disturbs this balance because now any difference below q3 can be regarded as insignificant. 
This yields SES 1 as the most vulnerable. Case 3 shows the effect of introducing partial compensation for 
H3, with p3=$100 and v3=$110. Hence, the advantage that SES3 carries over SES2 in terms of median 
income has become decisive: SES3 can no longer be more vulnerable than SES2, regardless of its 
performance on other harm criteria. The interaction between infrastructure components is introduced into the 
model in case 4: it is assumed that power failure leads to water supply disruption which increases the total 
number of affected households. It is clear that omitting interaction underestimates the impact of power 
failure. Introducing the non-linear relationship made SES3 most vulnerable because it harbours the highest 
number of disrupted households. 
 
Table 4: Four sample scenarios and effects of nonlinearity and degrees of compensation on rankings using SEVA 
(rankings: 1: most vulnerable; 4:least vulnerable; cases 2 and 3 are modifications of case 1 with the change highlighted in 
bold characters; in all intuitively linear relationship qi=0 and pi=max(Hik-Hij), k=1,n; j=1,n); H= Harm criteria;  

Case Description H Units Dir1 Type2 qi pi vi wi SES1 SES2 SES3 SES4 

Case 
1          

Intuitively, 
deductively 
linear and 
fully- 
compensating  

H1 $ ↑ 1 0 8000 N/A 1 35,000 29,000 38,000 25,000 
H2 count ↑ 1 0 140 N/A 1 100 107 125 113 
H3 $ ↓ 1 0 200 N/A 1 $875 $800 $1000 $955 

   Vulnerability Ranking 1 1 1 4 

Case 
2          

Intuitive non-
linearity 
present only 
for H3  

H1 $ ↑ 1 0 8000 N/A 1 35,000 29,000 38,000 25,000 
H2 count ↑ 1 0 140 N/A 1 100 107 125 113 
H3 $ ↓ 2 90 200 N/A 1 $875 $800 $1000 $955 

   Vulnerability Ranking 1 3 2 4 

Case 
3 

Same as case 
2 with partial 
compensation 
only for H3  

H1 $ ↑ 1 0 8000 N/A 1 35,000 29,000 38,000 25,000 
H2 count ↑ 1 0 140 N/A 1 100 107 125 113 
H3 $ ↓ 4 90 100 110 1 $875 $800 $1000 $955 

   Vulnerability Ranking 1 2 2 4 

Case 
4 

Deductive 
non-linearity 
introduced for 
H2 

H1 $ ↑ 1 0 8000 N/A 1 35,000 29,000 38,000 25,000 
H2 count ↑ 1 0 140 N/A 1 430 480 520 380 
H3 $ ↓ 5 0 200 N/A 1 $875 $800 $1000 $955 

   Vulnerability Ranking 3 2 1 4 
1Dir= Direction: ↑ (↓)  indicates that vulnerability increases (decreases) with increasing harm. 
2Type refers to the different relationships shown in Table 3 
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6. CONCLUSION 

We identified different sources of non-linearity prevalent in the context of IBVA. In the process, we 
differentiated between fundamental non-linearity, deductive non-linearity and intuitive non-linearity. We 
developed a multi-dimensional framework (SEVA) which allows a combination of non-linear and partial 
compensation effects to be incorporated in vulnerability assessments. An illustrative example of ranking 
vulnerability of four fictional beaches to sea level rise was presented to show how consideration of 
interdependency of infrastructure (which is a form of deductive non-linearity) can affect the final 
vulnerability ranking. We are currently applying this framework to a real-life vulnerability assessment 
exercise, namely the vulnerability of a set of coastal communities in Sydney to a rise in sea level (Tonmoy et 
al., 2012). 
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