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Abstract: Spatial data are common in health sciences and are available at various spatial scales such as the
point, grid or area level. This research considers modelling of point level data, which in practice could resemble
disease data with exact residential locations, by discretizing the study region into regular grid cells. Modelling
of health data at the grid level is desirable as it is geographically more accurate than using area level data and
yet protects patient confidentiality. The challenge is to specify an appropriate spatial scale for discretization
of point patterns. We investigate how changes in grid cell size affect model outcomes for various structures
of spatial point patterns. A Bayesian spatial model is used to evaluate the impact of varying spatial scales on
model outcomes. Estimation is based on a Bayesian spatial smoothness prior to model spatial dependence of
neighboring grid cells, namely an intrinsic Gaussian Markov random field (IGMRF). Bayesian computation
is carried out using integrated nested Laplace approximation (INLA). The impact of varying spatial scales is
studied in a simulation study. The simulated data consist of various spatial patterns that resemble different
patterns of point level health data in realistic settings, including inhomogeneous point patterns, patterns with
local repulsion, patterns with local clustering, and patterns with local clustering in the presence of a larger-
scale inhomogeneity. The evaluation criteria used in this study include the spatial correlation coefficient, the
coefficient of variation of the spatially structured effect, and the mean squared error between the observed
counts and the estimated counts. Based on the results, we note that complicated spatial patterns such as
inhomogeneous point patterns and spatially clustered patterns tend to be more sensitive to the changing spatial
scales, compared to homogeneous point patterns. It is therefore recommended to repeat the spatial analyses at
multiple spatial scales in order to determine the best scale to analyze the data in order to address the inferential
aims of interest. In particular, it is noted that fine grid cell sizes do not necessarily improve inferential outcomes
as there has to be sufficient information in the grid cells.
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1 INTRODUCTION

Spatial data are common in health sciences and are available at various spatial scales such as the point, grid
or area level. In the context of health sciences, area level data are widely available and commonly utilized
for convenience. For instance, an event of interest is often aggregated to administrative districts in order to
protect patient confidentiality. Despite the popularity of modelling health data at the area level, aggregation
of data increases spatial correlation (Song et al., 2011). Other concerns raised about aggregated data include
bias in estimates due to ecological fallacy (Robinson, 1950), loss of information, and issues of overlapping
boundaries and artificiality of administrative or political boundaries (Louie and Kolaczyk, 2006; Kirby, 1996).
Ecological fallacy refers to the difference between individual and group level estimates of risk measures. In
small area modelling, summary statistics collected for the group are used to make inference about the nature
of individuals within that group. However, summary statistics that describe group features do not necessarily
hold for individuals within that group. When a relationship observed at the group level is assumed to apply at
the individual level, the fallacy is committed.

Despite these acknowledged problems, the history of disease mapping has shown that point level data has
received less attention than area level data modelling. This is due in part to difficult access to individual level
data for confidentiality and privacy reasons, lack of geocoding of disease outcomes, concerns about the impact
of spatial misalignment, missing data and other issues. On the one hand, models based on individual level
data are, however, able to uncover local-level inequalities frequently masked by health estimates from large
areas such as states, regions or cities (Borrell et al., 2010). On the other hand, modelling of point level data is
computationally demanding when large datasets are involved due to dense covariance matrices.

A compromise between these two methods is modelling of spatial data at a grid level, by discretizing the
study region into regular grid cells, or by utilizing spatial data which are collected directly at the grid level
(also known as raster data). Raster data are especially useful in representing geographic phenomena that vary
continuously across space such as population density and other demographic characteristics that are important
in health modelling (Chang, 2010; Lai et al., 2009). Despite being less common than area level data modelling,
grid level modelling approaches have become increasingly popular in recent years (Baddeley et al., 2010; Li
et al., 2012). Grid level modelling of disease data is geographically more accurate than using aggregated
data and yet protects patient confidentiality. It allows the spatial scale at which the data are to be modelled
to be manipulated to a computationally and practically sensible scale, and avoids the problem of changing
geographical boundaries over time that can occur with area level data.

Determining an appropriate spatial scale is known to be a challenge in grid level modelling of spatial data.
The same basic data may yield different results when aggregated in different ways. The sensitivity of spatial
analyses to the definition of spatial scales is so-called the modifiable areal unit problem (MAUP) (Openshaw
and Taylor, 1981) which is widely known in the statistical and geographical literature. Given the acknowledged
MAUP, it is of interest to investigate the effect of changing scale on the analysis of spatial pattern and process.
At present, little is known about the impact of changing scales on the outcome of spatial models at different
spatial patterns. In this paper, we design a simulation study to examine how changes in grid cell size effect
model outcomes, in particular model goodness-of-fit at various spatial scales. Bayesian inference is carried out
using integrated nested Laplace approximation (INLA) throughout the study. The simulated datasets consist
of point data with various spatial patterns such as inhomogeneous point patterns, patterns with local repulsion,
patterns with local clustering, and patterns with local clustering in the presence of a larger-scale inhomogeneity.

2 METHODS

Let X be a spatial point-based dataset embedded in an observation window S which is discretized into 11 X 1o
grid cells {s;;} with area |s;;| fori = 1,...,m; and j = 1,...,na. Let N;; denote the observed number of
points in each grid cell s;;. Assume that N;; are conditionally independent Poisson counts

Nij ~ Po([sij|Aij),

where )\;; denotes the intensity in each grid cell. We are interested in modelling the log-intensity (1,; =
log(A;;)) of the Poisson process. Spatial variation in the log-intensity is modelled using different components
including , u;;, and v;;, where p refers to the common intercept term, u;; is a spatially structured term that
describes the effect of the location by assuming that geographically close areas are more similar than distant
areas, and v;; is an unstructured term that accounts for unexplained variability in the process.

In this model, the spatially structured component, u;;, is assigned an intrinsic Gaussian Markov random field

2006



S.Y. Kang et al., An investigation of the impact of spatial scales

Dataset X3 Dataset X4

Figure 1. Four patterns of simulated point-based data

(IGMRF) prior with unknown precision (inverse variance) 7,. The spatially unstructured component, v;;, is
assumed to be independent and identically distributed (i.i.d.) and normally distributed with zero mean and
unknown precision 7,; and gamma priors are assigned to the precision parameters 7, and 7.

An IGMREF for u;; is defined as

1 1
uij‘ufijaTuNN s E Ukl’n"T )
ikl 1

where n;; is the number of neighbors of grid cell s;;, u_;; denotes all elements in w except for u;;, and
17 ~ kl indicates that the two grid cells are neighbors that share a common boundary. A sum-to-zero constraint
is imposed on u;; to ensure identifiability of the intercept n.. We refer the reader to Besag et al. (1991) and Rue
and Held (2005) for further details. This model has been widely applied in disease mapping to study spatial
variation of disease risk. However, the neighborhoods in these papers were defined in terms of administrative
districts, while here we consider a finer neighborhood structure in terms of (regular) grid cells. The IGMRF
model can be written as follows,

IGMRF model : Nij = log()\”) =K + Usj + Vij-

In light of the computational cost of Markov chain Monte Carlo (MCMC) methods for spatial inference, we
adopt the integrated nested Laplace approximation (INLA) approach proposed by Rue et al. (2009). INLA
performs approximate Bayesian inference for latent Gaussian models. Computation in this study is performed
in the R package, by calling the inla program.

3 SIMULATION STUDY
3.1 Description of data

The purpose of this simulation study is to investigate the impact of spatial scales at various spatial structures
of point-based data. As guided by Illian et al. (2012), we considered four different situations: inhomogeneous
point patterns, patterns with local repulsion, patterns with local clustering, and patterns with local clustering in
the presence of a larger-scale inhomogeneity. The inhomogeneous point patterns (dataset X1) were generated
from an inhomogeneous Poisson process with trend function A = 1000 exp(—2x) on the unit square. For the
patterns with local repulsion (dataset X2), we generated point-based data from a homogeneous Strauss process,
with medium repulsion 8 = 700 (intensity parameter), interaction parameter v = 0.8 and interaction radius
r = 0.05, on the unit square. To generate the clustered patterns (dataset X3), we simulated a homogeneous
Thomas process with parameters x = 10 (the intensity of the Poisson process of cluster centers), o = 0.05
(the standard deviation of the distance of a point from the cluster center) and p# = 50 (the expected number
of points per cluster), on the unit square. For the last spatial pattern (dataset X4), we generated the data from
an inhomogeneous Thomas process with parameters ¢ = 0.01 and ;x = 5 and a simple trend function for the
intensity of parent points given by x(z1, 23) = 100z, on the unit square. Each pattern was then superimposed
with a pattern generated from an inhomogeneous Poisson process with trend function A = 500 exp(—2z). See
Figure 1 for illustrations of the point-based data.
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3.2 Model fitting and evaluations

We fit the IGMRF model to each dataset which is discretized into n; X ng regular grid cells. The precision pa-
rameters of the spatial effect and unstructured effect are both assigned gamma priors with parameters (1,0.01)
to impose the same level of spatial smoothing on the spatial field throughout the entire simulation study. To
illustrate modelling at different spatial scales, we set n1 = ny = 5,10, 15,20, 25, 30, 35,40, 45, 50 in the
simulation study, resulting in 25, 100, 225, ..., 2500 grid cells, respectively. A neighborhood structure has to
be specified to model spatial dependence of grid cells via the IGMRF prior. We use the cel12nb function
in the spdep R package (Bivand et al., 2011) to generate a list of neighbors for the grid cells, by applying a
rook definition of neighborhood, where two grid cells are termed neighbors if they share a common edge.

To measure the importance of spatial correlation in the data, the spatial correlation coefficient is calculated at
each spatial scale (Flask and Schneider IV, 2013),

¢ = Oy

)
Oy + Oy

where o, is the standard deviation of the spatially structured effects u, and o, represents the standard deviation
of the unstructured random effects v. The spatially structured component becomes increasingly dominant as
this statistic approaches unity.

The coefficient of variation of the spatially structured effect is also calculated,

Cv, =

e

)

where o, is described above and u is the mean of the spatially structured effects u. The CV,,, a normalized
measure of dispersion, shows the variation of the spatial effect in relation to its mean.

In terms of the comparison of predictive performance at various spatial scales, we calculate mean squared
error (MSE) between the observed counts in a grid cell, IV;;, and the estimated counts in the respective grid
cell, N, ijs

ni1Xne R 2
> (Nz'j —Ni )
ig=1

MSE =

ni X N9
A smaller MSE indicates a better predictive performance.
4 RESULTS

Figure 2 presents the spatial correlation coefficient, ¢, at various spatial scales for the four datasets. Dataset X1
which consists of inhomogeneous spatial pattern appears to have ¢ close to 1 at all scales, which suggests that
the spatially structured component is dominant over the unstructured effect. The change in grid cell size does
not affect ¢ for this spatial pattern. Dataset X2 (point pattern with local repulsion) produces ¢ that decreases
gradually from 0.56 to 0.35 across the changing spatial scales, signifying the diminishing spatial effect as the
grid cell size becomes smaller. The spatially clustered pattern in dataset X3 results in a drastic increase in ¢
from 0.01 at the scale 5 x 5 to 0.99 at all subsequent scales, suggesting an abrupt dominance of the spatial
effect. Dataset X4 which contains small clusters is also sensitive to the varying spatial scales as ¢ is observed
to vary across the scales. The spatial component in this spatial pattern becomes dominant at small grid cell
sizes (the scale 35 x 35 and beyond). The results for all four datasets hence suggest that complicated spatial
patterns such as inhomogeneous and clustered patterns appear to be sensitive to the change in spatial scales
and produce varying ¢ at different scales.

The coefficient of variation of the spatially structured effect (CV,,) at the different scales is shown in Figure 3.
Dataset X1 results in CV,, that decreases slightly across the changing spatial scales. Dataset X2 produces CV,,
that is rather consistent across the spatial scales. On the other hand, dataset X3 shows a drastic drop in CV,,
from 1.46 at the scale 5 x 5 to 0.22 at the scale 10 x 10 which then decreases gradually at all subsequent scales.
Dataset X4 displays a slight increase in CV,, at coarse spatial scales (scales 5 x 5 to 30 x 30) which then drops
abruptly from 1.43 at the scale 30 x 30 to 0.14 at the scale 35 x 35. Based on the results for all datasets, it is
observed that modelling at a smaller scale improves the model performance for inhomogeneous and clustered
spatial patterns, by reducing the CV,, which is a measure of dispersion normalized by its mean. However, a
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Figure 2. Spatial correlation coefficient for each dataset

Table 1. The MSE at various spatial scales for each dataset

Spatial scale Dataset X1 Dataset X2 Dataset X3 Dataset X4
5x5 2.964 8.021 0.396 8.892
10 x 10 1.793 2.630 0.390 1.503
15 x 15 1.184 1.286 0.326 0.848
20 x 20 0.668 0.762 0.304 0.476
25 x 25 0.476 0.493 0.279 0.380
30 x 30 0.367 0.360 0.252 0.266
35 x 35 0.266 0.265 0.218 0.234
40 x 40 0.202 0.223 0.210 0.186
45 x 45 0.159 0.176 0.183 0.149
50 x 50 0.132 0.140 0.159 0.125

very fine scale is not necessarily favored as it is shown that CV,, becomes consistent after a certain spatial
scale for all datasets. Further discretization into finer grid cells does not contribute to significant decrease in
CV,.

In regard to the predictive performance, Table 1 presents the MSE at various spatial scales for all four datasets.
It is evident that the MSE reduces across the decreasing grid cell sizes for all datasets, suggesting that the
predictive performance of the model is improved at finer scales. For all datasets, it appears that the MSE
reduces substantially at coarser scales but decreases gradually at finer scales. For instance, the MSE for
dataset X1 has only slight decrease after the scale 20 x 20, which means that further discretization into scales
finer than this is not necessary. Similarly, the MSE for dataset X2 becomes rather consistent after the scale
20 x 20, whereas the MSE for dataset X3 seems to favor small grid cell sizes. The MSE for dataset X4 shows
that modelling at scales finer than 15 x 15 does not improve the prediction significantly.

5 CONCLUSIONS

In this study, we investigate the impact of varying spatial scales on the model outcomes using a simulation
study. The simulated data consist of various spatial patterns that resemble different patterns of point level
health data in realistic, including inhomogeneous point patterns, patterns with local repulsion, patterns with
local clustering, and patterns with local clustering in the presence of a larger-scale inhomogeneity. The evalu-
ation criteria used in this study include the spatial correlation coefficient (¢), the coefficient of variation of the
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Figure 3. Coefficient of variation of the spatially structured effect for each dataset

spatially structured effect (CV,,), and the mean squared error between the observed counts and the estimated
counts (MSE). The results of analyzing all four datasets in this study suggest that different spatial scales may
be more applicable for different spatial patterns.

Based on ¢ obtained for each dataset, we note that complicated spatial patterns such as inhomogeneous point
patterns and spatially clustered patterns tend to be more sensitive towards the changing spatial scales, compared
to homogeneous point patterns. For these spatial patterns, it appears that the dominance of spatial component
is largely affected by the size of the grid cells. The CV,, produced in each dataset also supports that inho-
mogeneous and clustered point patterns are sensitive to the spatial scales. When predictive performance of
the model at various spatial scales is of concern, the MSE is used as a criterion for evaluation. As observed
in this study, the reducing MSE across the decreasing spatial scales suggests that the predictive performance
is improved at finer scales. Given these results, it is recommended to repeat the spatial analyses at multiple
spatial scales in order to determine the best scale to analyze the data. One should note that fine grid cell sizes
do not necessarily improve model outcomes as there has to be sufficient information in the grid cells.

In this study, we have not included covariates in the model although this is straightforward to do. The inclusion
of covariates may alternate the spatial scale effects observed here. The aggregation of counts using grid
level modelling approach may still lead to some degree of aggregation or ecological bias when covariates are
involved. However, if the grid size is sufficiently small in terms of population and physical characteristics of
the exposure, the homogeneity assumption of exposure within areas can be assumed to hold. Thus, there will
be less concern about ecological bias when covariates are included in the model.

In the health context, analysis of health data at grid level does not only protects patient confidentiality but also
reduces ecological bias as the data are geographically more precise than data aggregated by administrative
districts. This approach may be applied to street level data and thus avoid confidentiality issues and the need
to obtain patient consent. Finally it is also of interest to consider the inclusion of time components to build
spatio-temporal models for discretized spatial patterns. This is a topic for future research.
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