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Abstract: Australia’s 2000’s decade saw the sharpest rise in mining investments arising from developing 
Asian emerging economies’ high demand for commodities like coal, iron ore, nickel, oil and gas which drove 
up prices to a historic level (Connolly & Orsmond, 2011). As of December 2012, 39 %  and 9 % of the 
Australian Securities Exchange’s stocks were of the mining (coal and uranium stocks are included in this 
category) and energy (e.g. oil, gas and renewable energy stocks)  sectors respectively, and investors recently 
have been considering separate portfolio positions in energy and mining stocks (Jennings, 2010). Facts of 
these nature set the stage for the task of selecting an optimal portfolio of stock securities where the 
fundamental questions faced by every investor, individual or institutional, are: a) what is the optimal point in 
time to go long in the investment position?, b) what are the optimal amounts to invest in every asset of a 
portfolio? and, c) when is the optimal time to short the portfolio investment position? The focus of the 
present study is on b) within a one period ahead forecast scenario. 
 
Understanding the price and volatility movements of stock securities taking as a basis of study their own 
dynamics and co-dynamics is a complex task that may be better addressed through a multilateral modelling 
approach. This paper, in this regard, departs from a single model application by fitting multiple risk measures 
to the optimization of four portfolios each consisting of 20 ASX’s stocks from the gold, iron ore-nickel, 
uranium-coal and oil-gas sectors. The five risk measures compared are: the variance, mean absolute deviation 
(MAD), minimizing regret (Minimax), conditional value at risk (CVaR), and conditional drawdown at risk 
(CDaR), where the last two are threshold based measures. The risk measure parameters are input into mean-
variance quadratic (QP) and differential evolution (DE) portfolio problem specifications.  
 
Accurate estimations of the underlying interaction of stocks return series is a crucial element in portfolio 
allocation and portfolio risk management and frequentist traditional measures of dependence are rather 
inadequate. Here, with the objective of achieving more accuracy in the estimation of the dependence matrix, 
a Gaussian pair c-vine copula (PC), the regular graphical lasso (RL) and adaptive graphical lasso (AL) are 
fitted. Possible advantages from using these recently proposed and sophisticated techniques under model 
specifications where the covariance matrix is the measure of risk are indicated.  
 
The main objectives of the present study are to calculate the optimal weights to be invested in every stock of 
the portfolios making use of linear and nonlinear model specifications and the risk measures suggested, 
analyse the weight allocation differences and seek portfolio optimization advantages from using pair vine 
copulas and the graphical lasso in the estimation of dependence. The present multimodal approach is, 
therefore, expected to be more robust and as a consequence, provide more complete information that could 
serve for improved decision making on portfolio selection, allocation and rebalancing. Research questions 
are answered based on the analysis of gold portfolio outcome values, only.   
 
Findings indicate that CDaR is an important risk measure to be considered, along with other measures of risk 
when optimizing portfolios of stocks and no single measure of risk is suggested alone. The Gaussian pair c-
vine copula through the use of one different parameter in the modelling of every pair of variables’ joint 
distribution appears to be more sensitive in capturing data’s distribution characteristics. The adaptive 
graphical lasso also appears to be more perceptive when grasping the signal of the underlying interaction of 
the stocks. Therefore, valuable information could be drawn and inferred from applying multiple risk 
measures and sophisticated statistical techniques for their estimation. The weight allocation from threshold 
risk measures such as CVar and DaR and Minimax clearly differs from the rest. The models identified stocks 
with high return relative to risk and vice versa. The originality of the present study lies on the sectors of 
application and its multi-model nature. 
 
Keywords: pair copulas, lasso, mean-variance quadratic, CVaR, CDaR, MAD, mining-energy stocks  
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1.      INTRODUCTION 

Portfolio optimization has to do with optimal allocation of resources and the implicit management of risk 
which are modelled through a set of constraints and an element of forecasting. While constraints, as part of 
the model specification, shape the problem, the selected risk measure significantly influences the 
optimization outcome. The risk measures applied in this study could be considered as conservative 
investment approaches (perhaps suitable to risk averse investors preferring a lower return in exchange for 
minimal or no losses in their investments) whose priority is wealth preservation although not entirely. 
   
Markowitz (1952) is recognized as the proposer of a nonlinear convex quadratic modelling technique for 
portfolio optimization. Under him, risk and return play a central role in the optimization problem where risk 
is identified as the variance to be minimized for a certain level of return. Risk under this setting is primarily 
linked to the covariance of the assets while diversification is highly sought. The inability of the method to 
account for extreme risk through the variance as the measure of risk and its tendency to generate implausible 
weight allocations (Allen, Kramadibrata, Powell & Singh, 2012) has made the optimization of portfolios 
under a single risk measure largely obsolete while multi-risk measure-based portfolio optimization 
approaches, the norm. New statistical techniques for dependence matrix estimation with the purpose of 
improved portfolio optimization have been widely adopted and developed due to the possibility to exploit the 
multiple, already identified and parameterized, distribution functions of random variables according to their 
densities and corresponding probabilities, thus allowing, as in the case of pair copulas, the design of 
multivariate and multiform probability distribution structures based on those known distributions as the 
building blocks. The graphical lasso for sparsity generation and precision matrix estimation has grown in 
popularity primarily because it helps reduce the model’s estimation error, often expressed as an error term in 
regression models, and the bias introduced by irrelevant-inactive variables (Tibshirani, Bien, Friedman, 
Hastie, Simon. Taylor & Tibshirani J., 2012). 
 
Portfolio optimization in a convex quadratic setting can be traced back to Markowitz (1952) with a large 
body of literature being devoted to extensions and applications of the model. A recent portfolio optimization 
adopting CVaR as the measure of risk with specific focus on the mining sector of Australia can be found in 
Allen and Powell (2010), which in line with Roy’s Safety First criterion, minimizes the probability of 
attaining a return lower than the short fall probability. Recent endeavours in the field, on the other hand, have 
led to the development of a differential evolution algorithm (Ardia, Boudt, Carl, Mullen & Peterson, 2011) 
able to solve convex and non-convex problems and account for nonlinearities in the distribution of the data. 
An implementation of the technique has been conducted by Krink and Paterlini (2011). Sklar’s theorem, on 
the other hand, paved the road for what is now known as pair vine copula constructions for dependence 
matrix estimation, and Brechmann and Schepsmeier (2011) suggest Joe’s (1997) work to be the first in 
dealing with pair vine copula constructions. Subsequent significant developments in the field have come 
through Bedford and Cooke (2001) and Aas, Czado, Frigessi and Bakken (2009). Finally, Dempster’s (1972) 
work is considered, in the literature of sparsity search, to be a starting point towards Tibshirani’s (1996) 
regular graphical lasso with subsequent improved versions of the model (e.g. adaptive graphical lasso)  to be 
carried out by Fan and Li (2001) and Zou (2006). 
 
The questions to be dealt with in this study are: What are the resulting weight allocation and weight 
allocation differences from applying multiple risk measures and models? And, do recent sophisticated 
methods for dependence matrix estimation such as pair vine copulas and graphical lasso generate any 
portfolio optimization advantages? Answer to these questions is based on the resulting gold portfolio values, 
only. 
  
2.     MODELS 

The QP technique invokes the old saying of “not putting all one’s eggs into one basket” and two underlying 
major assumptions of its framework are the normality of return’s distribution and the quadratic utility 
expressing investors’ preferences. The method is based on a central tendency (mean) measure that 
symmetrically and with escalating rate, due to the square feature of the quadratic objective function, 
penalizes deviations from the centre. The optimization problem to be solved here is: 
 						݉݅݊								௪ 1݊෍ቆ෍ ௜,௝ݎ௝൫ݓ − ௝൯௠௝ୀଵߤ ቇଶ௡

௜ୀଵ 								s. t.				෍ݓ௝௠
୨ୀଵ ௝ߤ = 	μ୔	; 										෍ݓ௝ = 1௠

୨ୀଵ 																																				(1) 
 
where ݓ௝ ≥ 0, for  ݆ = 1,… ,݉ (Ghalanos, 2013).    
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The MAD method, as compared to the QP, penalizes deviations from the centre with a linear rate. This 
feature, while allowing faster solutions to large optimization problems, does not adequately represent most 
investors’ preferences and demands. However, since the risk measure does not scale or penalize highly 
kurtotic observations as heavily as the QP does, it could be considered as more robust. The linear problem to 
be solved here is: 
 min௪,ௗ 1݊෍݀௜௡

௜ୀଵ .ݏ					 ௜,௝ݎ෍൫				.ݐ − ௝ݓ௝൯ߤ ≤ ,௜ݕ ∀௜∈ ሼ1, … , ݊ሽ௠
௝ୀଵ 	; 		෍൫ݎ௜,௝ − ௝ݓ௝൯ߤ ≥ ,௜ݕ− ∀௜∈ ሼ1, … , ݊ሽ௠

௝ୀଵ 											(2) 
                          s.t.	   ෌ ௝௠୨ୀଵݓ ௝ߤ = 	μ୔	 ;    ∑ ௝ݓ = 1௠୨ୀଵ ௝ݓ           ;  ≥ 0,∀௝∈ ሼ1,… ,݉ሽ 
                                                                            
with parameter ݀௜ accounting for absolute deviations from the forecast mean (Ghalanos, 2013).  
 
The Minimax risk measure is perhaps the most conservative because, according to first constraint of the 
linear programming formulation (below), the difference between the maximum loss of the portfolio ܯ௣ and 

the forecast return of the portfolio ෌ ௝௠୨ୀଵݓ    .௜௝ is targeted to be less or equal to zero (Ghalanos, 2013)ݎ
   minெ೛,௪ܯ௣ .ݏ														 ௣ܯ				.ݐ −෍ݓ௝ݎ௜௝ ≤ 0, ∀௜∈ ሼ1, … , ݊ሽ௠

௝ୀଵ ;								෍ݓ௝௠
୨ୀଵ ௝ߤ = 	μ୔	; 							෍ݓ௝ = 1௠

୨ୀଵ ,																				(3) 
.ݏ		                       .ݐ ݆ݓ			 ≥ 0,∀௝∈ ሼ1,… ,݉ሽ	  
CVaR has been suggested because it is a coherent measure of risk (e.g. when the probability distribution 
function is continuous) (Ghalanos, 2013) and is more in tune with the loss function of the tail distribution. 
The linear problem to be solved here is:  min௪,ௗ,௩ 1݊ܽ ෍݀௜ + ௡ݒ

௜ୀଵ .ݏ									 ௜,௝ݎ௝ݓ෍		.ݐ + ݒ ≥ −݀௜, ∀௜∈ ሼ1, … , ݊ሽ௠
௝ୀଵ ;							෍ݓ௝௠

୨ୀଵ ௝ߤ = 	μ୔	; 							෍ݓ௝ = 1௠
୨ୀଵ 								(4) 

.ݏ                                      ௝ݓ				.ݐ ≥ 0,∀௝∈ ሼ1,… ,݉ሽ;			݀௜ ≥ 0,∀௝∈ ሼ1,… , ݊ሽ	                                       
where	μ୔	as above, represents the target return of the portfolio, ݒ is the VaR at the a-coverage rate, and ݀௜ 
accounts for the deviation values below VaR. 
   
The CDaR measure of risk is path dependent and, in the context of portfolio optimization probable 
drawdowns instead of returns’ distribution alone, are the focus of attention when estimating the optimal 
loadings on the stocks. The linear portfolio optimization problem to be solved here is: 
 min௪,௨,௩,௭	ݒ + 1݊ܽ ෍ݖ௜௡

௜ୀଵ 			 
.ݏ  ௜ݖ		.ݐ − ௜ݑ + ݒ ≥ 0, ∀௜∈ ሼ1,… , ݊ሽ;	෍ݓ௝ݎ௜,௝ + ௜ݑ − ௜ିଵݑ ≥ ଴ݑ			,0 = 0, ∀௜∈ ሼ1,… , ݊ሽ௠

௝ୀଵ .ݏ																				  ௜ݖ			.ݐ ≥ ௜ݑ  ,0 ≥ 0,  ∀௜∈ ሼ1, … , ݊ሽ;෌ ௝௠୨ୀଵݓ ௝ߤ = 	μ୔	; 	∑ ௝ݓ = 1௠୨ୀଵ ; ௝ݓ ≥ 0,∀௝∈ ሼ1,… ,݉ሽ    (5)                           
                     

with parameters ݖ and ݑ playing the role of auxiliary vectors of CDaR’s variables and, for the purpose of 
modelling, the cumulative return distribution, respectively. The parameter ݒ accounts for the CDaR at the ܽ 
quantile level (Ghalanos, 2013). 
 
The DE non-convex optimization technique uses floating-point encoding of a population, arithmetic 
operators and alteration for the selection and evolution of potential solutions and converges systematically by 
applying transformations (i.e. differential mutations) on vectors of parameters identified as the population. 
Analytically, let  ݔ௜,௚ represent an existing population with ݅ vectors of parameters and ݃ generations. The 
first transformed or mutated vector of parameters ݒ௜,௚ is generated by randomly selecting three population 
members	ݔ௥଴,௚, ݔ௥ଵ,௚ and ݔ௥ଶ,௚ or, 
 
௜,௚ݒ                                                  = ௥଴,௚ݔ + ܨ ∙ ௥ଵ,௚ݔ) −   ௥ଶ,௚)                                                                    (6)ݔ
where ܨ is a scaling factor with values greater than zero and less than one (Ardia et al., 2011).  

On the subject of PC, let the expression, 
 																							ܲ൫ܺଵ ≤ ଵିܨ ଵ(ݔଵ), … , ܺ௡ ≤ ௡ିܨ ଵ(ݔ௡)൯ = P(	 ଵܷ ≤ ,	ଵݔ … , ܷ௡ ≤ (		௡ݔ ≡ C(ݔଵ,…                                                     	 (7)																				)	௡ݔ
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where ଵିܨ	 ଵ(ݔଵ)  is the inverse distribution function, ଵܺ  is a random variable, 	 ௜ܷ ≡ )௜ܨ ௜ܺ)  is uniformly 

distributed on [0, 1] and C is a copula; if we make use of the property of inverse distributions ܨ௜ቀܨ௜ି ଵ( ௜ܷ)ቁ ≥௜ܷ, divide the first term of the inequalities on both sides of (7) by		ܨ௜ and use Sklar’s theorem (Sklar, 1959), 
the following equivalent expression of (7) should hold, 
 
(࢞)ܨ                                                = ,ଵݔ)ܨ	 … , (௡ݔ = C൫ܨଵ(ݔଵ),       ൯                                                (8)(௡ݔ)௡ܨ…
In the application of the Gaussian PC the model (9) suggested by Aas et al.(2009) for the decomposition of 
the multivariate probability density, is used. 
…,ଵݔ)݂  , (ௗݔ =∏ ௞݂(ݔ௞)ௗ௞ୀଵ ∙ ∏ ∏ ܿ௜,௜ା௝|ଵ:(௜ିଵ)	ௗି௜௝ୀଵௗିଵ௜ୀଵ ൫F(ݔ௜|ݔଵ, … ,(௜ିଵݔ F൫ݔ௜ା௝หݔଵ, … ,  )	(9																										ଵ:(௜ିଵ)൯	௜,௜ା௝|ࣂ௜ିଵ൯หݔ
Finally, estimation of the sparse dependence matrix through the RL and AL is accomplished by solving the 
following optimization problems:  
 
                                         log det	Ω − (ࡿΩ)ݎݐ − ∑ߣ ∑ ⃓௡௜ୀଵ ௜௝⃓௡௜ୀଵݓ                                                             (10) 
                                        log det Ω − (ࡿΩ)ݎݐ − ∑ߣ .௡௜ୀଵ ∑ ς௜,௝௡௝ୀଵ ⃓߱௜,௝⃓                                                      (11)	

 
Here, ࡿ is the sample covariance matrix, Ω the precision matrix, ݓ௜௝  the matrix componenets of	Ω , ߣ the 
penalizing or tuning parameter, det refers to the determinant, 	ݎݐ refers to the trace, and  ς௜,௝ in (11) is the 
penalty matrix of weights applied to the precision matrix components in the adaptive graphical lasso problem 
(Fan ݁ݐ	2009 ,.݈ܽ).       

3.     DATA AND MODEL APPLICATION 

Samples (i.e. portfolios) of 20 daily frequency stock return series from the gold, iron ore-nickel, uranium-
coal and oil-gas from the ASX are modelled. The length of the return series spans from 7 January, 2005 to 2 
July, 2012 thus covering the pre-GFC, GFC and post-GFC periods. The length of the return series may 
reduce the sampling error. All daily log return series have been filtered with an ARMA (1,1)-GARCH (1,1) 
with student-t innovations and, in the case of Gaussian PC copula application, a probability integral 
transform has been applied to the standardized residuals in order to obtain the copula data. The order of the 
columns in the PC application follows the criterion suggested by Czado, Schepsmeier and Min (2012), where 
the stock with the strongest relationship with the rest of the stocks in the portfolio becomes the first column 
in the data set and so on. The first column’s places in the gold, iron ore-nickel, coal-uranium and oil-gas are 
occupied by St. Barbara (SBMX), BHP Billiton (BHPX), Paladin Energy (PDNX) and Woodside Petroleum 
(WPLX), respectively. The required 	μ୔	 has been set to be mean(colMeans(portfoliodata)) for mere 
convenience. All table’s values are in percentage.  

 
  
Figure 1: On the left, the first tree of applied Gaussian pair c-vine copula to the iron ore-nickel portfolio. On 

the centre and right, the efficient frontiers of gold and oil & gas portfolios with CDaR and CVaR. 
 
According to the gold portfolio’s table of weights in the appendix, the CDaR measure of risk when 
optimizing does not seem to prioritize the overall historical distribution of returns per se, but instead the 
number of drawdowns occurred and those with the probability to take place in the future. The mean and 
variance are therefore under this framework necessary but not the most important factors. Concerning 
patterns in weight allocation, it can be seen that all risk measures on the model variations converge, with not 
very large variations from a mean of the weights, in Intermin Resources, Kalgoorlie Mining, Evolution 
Mining and Apex Minerals, indicating that these stocks have a high return relative to risk. It is also 
interesting to note that while under CDaR modelling St. Barbara (SBMX) (i.e. the stock most strongly 
correlated with the rest of the stocks in the gold portfolio) is given a weight of 13.22%, the rest of the models 
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do not follow, with CVaR, Minimax, QPPC, DEPC, DERL and DEAL placing near to zero weights while 
QPRL and QPAL give weights around 1.25%. Another more or less consistent pattern of investment of the 
risk measures and models happens with Citigold where the only discrepant weight (e.g. zero) is allocated by 
CDaR.  
 
Further analysis on the gold portfolio’s table of weights indicates that, when the empirical covariance matrix 
of the log returns is used, the weights from the QP and DE are not very different. The weights under QPRL 
and QPAL and under DERL and DEAL are also quite alike. In QPPC and DEPC it can be seen that the 
Gaussian pair copula not surprisingly appears to capture characteristics in the data that QP, with the use of 
the empirical covariance matrix, does not. In fact, on multiple occasions when the QP allocates a high weight 
to a particular stock, the QPPC allocates a small amount. This type of opposed weighting behaviour makes 
sense under the well-known feature about QP of tending to underestimate the underlying interaction of 
variables. The QPAL and DEAL in comparison with the QP with empirical dependence matrix also shows an 
opposed weighting behaviour in many occasion indicating that the AL is more accurate in grasping the signal 
of the variables’ network matrix. The main noticeable differences in weight allocation happen between the 
threshold risk measures (i.e. CVaR and CDaR), Minimax and the rest of the models. The largest portfolio 
risk values are generated via CVaR, CDaR, Minimax, QPRL and QPAL, a possible indication that these 
model specifications are more perceptive to features in the tails of the data’s distribution. In this application, 
the gold portfolio return is around -0.10% where the negative sign is due to the targeted 	μ୔	 being negative 
too. For a positive 	μ୔	 it suffices to alter the targeted	μ୔	. Therefore, differences in the weight allocation 
based on the various risk measures and model specifications exist and the use of sophisticated techniques for 
dependence estimation such as pair vine copulas and the graphical lasso does generate different weight 
allocation that may lead to improved portfolio optimization. Finally, a risk contribution analysis based on the 
weight allocation under all risk measures and model variations indicates that De Grey Mining (DEGX), 
Intermin Resources (IRCX), Excalibur Mining (EXMX), Haoma Mining (HAOX) and Kalgoorlie Mining 
(KMCX) are the largest contributors of risk to the gold portfolio. A table with risk contribution values has 
been omitted due to the space constraint. 
 
 4.     CONCLUSION  
Differences in weight allocation have been identified from all risk measures applied. Weight allocations 
derived from threshold risk measures such as CVaR and CDaR and, Minimax are noticeably different from 
those produced by the rest. CDaR, based on its peculiar weight allocation criteria and the gold portfolio 
resource allocation in this study, is a risk measure to be considered and compared with alternative risk 
measures when optimizing portfolios of stocks. The use of a Gaussian pair vine copulas and adaptive 
graphical lasso models in the estimation of dependence generated weight allocations differing from the rest 
and when compared with that of QP, the models appear to capture more features in the tail’s distribution. 
Specifically, the use of one different parameter in the modelling of every pair of variable’s joint distribution 
by the Gaussian pair vine copula leads to difference results. The sparsity search technique of the adaptive 
graphical lasso, on the other hand, may have enabled a better grasp of the underlying signal of the 
dependence matrix. Therefore, multi risk measure approaches and the use of sophisticated techniques for the 
estimation of risk measures are suggested.  
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APPENDIX A         
  

Gold 
(weights) 

CVaR 
(LP) 

CDaR 
(LP) 

Mini 
max 
(LP) 

MAD 
(LP) 

Var 
(QP) 

Var 
(QP) 
PC

Var 
(QP) 
RL

Var 
(QP) 
AL

Var 
(NLP) 

DE

Var 
(NLP) 
DEPC 

Var 
(NLP) 
DERL 

Var 
(NLP) 
DEAL

SBMX 0.19 13.22 0 2.31 5.13 0 1.29 1.24 6.06 0.05 0.07 0.26
NWRX 2.95 0 7.28 4.03 4 0 5.97 6.2 4.17 0.03 5.43 5.68
NSTX 3.48 0 0 4.4 6.03 7.23 8.08 7.87 6.29 4.24 6.57 6.44
SHKX 6.28 0 1.11 6.24 5.36 1.69 3.39 3.48 4.94 2.5 3.98 3.97
DEGX 14.81 0 13.2 9 8 6.23 5.77 5.67 7.77 7.45 6.3 6.15
RSGX 2.07 0 3.51 6.83 8.48 2.64 0.79 0.82 9 2.32 0.18 0.22
AXMX 4.6 10.33 11.63 4.21 3.97 4.48 4.05 4.17 3.53 5.24 5.14 5.13
ORNX 5.39 0 6.59 5.15 4.87 5.33 4.27 4.23 4.51 5.61 4.67 4.48
RCFX 2.08 0 0 2.85 2.97 5.56 5.65 5.71 2.9 5.92 5.77 6.02
EXMX 0.94 0 3.13 1.23 1.02 5.56 7.06 6.73 0.92 6.19 7.47 7.1
TAMX 4.61 0 0 7.62 5.34 4.11 2.88 2.99 5.44 3.93 2.82 2.82
GLNX 1.27 0 2.46 5.81 2.09 5.39 4.55 4.35 1.8 5.74 6.88 6.56
MOYX 3.52 0 0 3.49 1.85 4.06 3.29 3.78 1.52 5.07 3.76 4.17
EVNX 4.32 6.81 8.56 2.76 4.19 5.1 3.35 3.56 4.36 4.76 2.74 3.08
AUZX 2.13 0 0 1.13 1.34 5.77 6.28 6.4 1.33 5.94 6.57 6.61
HEGX 9.74 0 0 5.32 6.28 4.43 4.62 4.69 6.16 4.48 4.53 4.69
KMCX 6.66 40.81 6.96 6.06 5.29 6.16 6.92 6.81 5.03 6.71 7.59 7.47
IRCX 10.38 25.46 9.01 9.53 10.91 15.05 9 8.56 11.02 12.73 8.08 7.6
HAOX 5.86 3.36 0 3.96 3.22 6.95 8.97 8.69 3.35 7.06 8.21 7.98
CTOX 8.73 0 26.57 8.08 9.66 4.27 3.83 4.06 9.88 4.02 3.24 3.59
P-Risk 4.63 178 7.41 1.39 0.037 0.42 8.39 7.19 - - - - 
P-Ret -0.10 -0.10 -0.10 -0.10 -0.07 -0.097 -0.10 -0.10 0.034 -0.014 -0.02 -0.018

 
Iron ore & 

nickel 
(weights) 

CVaR 
(LP) 

CDaR 
(LP) 

Mini 
max 
(LP) 

MAD 
(LP) 

Var 
(QP) 

Var 
(QP) 
PC

Var 
(QP) 
RL

Var 
(QP) 
AL

Var 
(NLP) 

DE

Var 
(NLP) 
DEPC 

Var 
(NLP) 
DERL 

Var 
(NLP) 
DEAL

AGOX 0 0 0 0 0 5.23 5.35 5.22 0.14 3.78 1.36 1.35 
GRRX 1.73 0 0 4.05 4.17 4.51 6.68 6.66 4.9 4.45 6.64 6.33 
ILUX 24.12 34.68 52.5 18.59 24.54 7.14 7.24 7.27 27.49 6.26 5.99 5.96 
FMGX 0 0 0 0 0 7.33 5.23 5.28 0.41 5.43 0.02 0.01 
GBGX 0 0 0 0 0 0.17 3.63 3.49 0.05 0 1.23 1.49 
MGXX 0 0 4.18 0 0 5.9 0.55 0.48 0.07 5.1 0.12 0.05 

ARI 4.76 0.94 20.06 11.87 8 3.91 0 0 7.31 4.48 0.51 0.4 
SHDX 9.52 4.16 1.59 5.6 6 8.18 11.91 11.94 6.06 8.68 12.66 12.4 
FMSX 0 3 0 0.7 0.81 7.53 12.29 12.55 0.99 4.82 8.86 9.44 
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MOLX 3.34 0 0 0.97 0.66 4.86 2.72 2.63 0.23 6.17 6.8 7.14 
ADYX 0.86 0 0 1.89 1.4 6.08 6.82 6.77 1.56 7.78 9.92 10.02 
ARHX 0.46 10 11.82 1.96 1.02 5.19 3 2.87 0.71 7.03 7.57 7.57 
BHPX 31.6 38.41 9.64 32.36 37.1 0 0 0 30.76 0 0.02 0.01 
FCNX 4.12 8.69 0 3.34 2.5 4.16 4.7 4.99 2.31 7.33 10.18 10.07 
IGOX 0 0 0 1.43 0 6.69 3 3.22 1.05 5.73 1.49 1.52 
POSX 0 0 0 0.83 0 5.12 5.78 5.89 0.17 5.52 6.93 6.97 
WSAX 0 0 0 1.12 0 3.32 0 0 0.91 2.75 0.03 0.05 
MLMX 7.43 0 0.2 6.51 7 7.69 11.12 10.92 6.64 7.11 10 9.56 
HRRX 11.99 0 0 8.78 6.7 6.3 9.81 9.83 7.95 6.42 9.66 9.65 
MCRX 0 0 0 0 0 0.67 0 0 0.28 1.17 0 0 
P-Risk 4.18 53.40 8.26 1.26 0.03 0.68 18.31 16.65 - - - -
P-Ret -0.002 -0.002 -0.002 -0.002 0.007 -0.002 -0.002 -0.002 0.01 -0.020 -0.04 -0.04

 
Coal & 

Uranium 
(weights) 

CVaR 
(LP) 

CDaR 
(LP) 

Mini 
max 
(LP) 

MAD 
(LP) 

Var 
(QP) 

Var 
(QP) 
PC

Var 
(QP) 
RL

Var 
(QP) 
AL

Var 
(NLP) 

DE

Var 
(NLP) 
DEPC 

Var 
(NLP) 
DERL 

Var 
(NLP) 
DEAL

BWDX 4.57 0 0 6.54 2.95 8.42 8.5 8.8 5.16 8.05 7.15 7.45 
CNXX 0 0 0 0 0.11 5.04 4.7 4.85 0.81 4.41 3.41 3.56 
GLLX 2.95 0 1.62 3.17 2.79 6.47 6.49 6.42 3.57 5.76 6.25 6.17 
WALX 0.97 16.94 0 1.91 1.92 7.19 10.15 10.06 2.22 7.08 8.55 8.43 
BND 2.41 0 0 1.48 1.34 5.29 4.23 4.37 1.33 5.09 4.37 4.44 

CLAX 3.78 0 0.97 11.22 0.48 1.41 2.8 2.78 0.52 2.45 7.32 7.37 
NSLX 1.83 0 0 1.88 0.9 5.84 5.12 5.09 1.54 6.31 6.53 6.47 
AQAX 0 21.14 0 0 0.98 2.23 3.69 3.17 3.17 2.44 1.05 0.59 
NHCX 3.97 30.39 0 6.49 13.36 5.11 5.34 5.22 16.77 4.43 3.28 3.42 
SOLX 51.87 0 55.21 49.34 58.77 5.16 6.3 6.58 46.03 4.69 4.72 4.8 
BLZX 2.67 0 6.58 1.46 1.18 7.29 6.42 6.38 1.14 8.65 8.23 8.23 
FYIX 8.6 0 14.48 5.09 3.7 6.24 6.51 6.51 3.19 7.17 8.76 8.76 

SMMX 0 0 4.5 0.19 4.94 8.36 7.68 7.71 4.22 6.69 3.99 4.08 
EMAX 5.63 0 0 3.22 3.15 4.13 0.34 0.34 3.05 3.98 1.07 1.12 
PDNX 0 0 0 0 0 0 0 0 0.48 0 0.02 0 
UEQX 0 0 7.23 1.52 0.84 4.68 3.94 3.9 1.4 4.77 4.14 3.98 
LRRX 2.22 0 2.34 0.3 0 1.57 4.17 4.44 1.24 1.79 6.26 6.34 
DYLX 0 0 0 0 0 5.08 4.29 4.45 1.36 4.27 2.2 2.31 
BLRX 0 0 0 0.05 0 4.09 4.39 4.26 0.03 3.75 3.21 3.1 
RSLX 8.46 31.51 7.08 6.14 2.52 6.38 4.96 4.68 2.77 8.23 9.51 9.37 
P-Risk 3.37 103 6.26 0.945 0.015 0.5 10.01 9.34 - - - - 
P-Ret -0.07 -0.07 -0.07 -0.07 -0.008 -0.073 -0.073 -0.073 0.06 -0.017 -0.053 -0.053

  
Oil & 
Gas 

(weights) 

CVaR 
(LP) 

CDaR 
(LP) 

Mini 
max 
(LP) 

MAD 
(LP) 

Var 
(QP) 

Var 
(QP) 
PC

Var 
(QP) 
RL

Var 
(QP) 
AL

Var 
(NLP) 

DE

Var 
(NLP) 
DEPC 

Var 
(NLP) 
DERL 

Var 
(NLP) 
DEAL

ACN 7.68 0 0 5.89 1.64 4.19 5.84 5.5 1.21 5.23 7.72 7.32 
AWEX 6.76 6.27 0 2.76 0 0 0 0 0.27 0.03 0.01 0.22 
BASX 6.72 23.21 1.2 8.23 1.97 3.89 4.8 5.26 2.12 10.93 8.82 8.97 
BPTX 0 0 0 0 0 3.4 2.72 2.86 0.31 2.24 0.19 0.27 
CTXX 0 0 2.6 2.6 5.52 5.42 3.58 3.55 5.85 4.54 2.4 2.69 
COEX 0 0 0 0.75 4.73 7.04 8.2 8.23 5.1 5.3 5.61 5.63 
CUEX 5.49 3.59 18.64 5.92 4.22 5.45 6.33 6.48 4.6 5.28 6.37 6.31 
GRVX 3.29 0 0 5.71 1.94 9.56 15.33 14.71 1.78 10.7 16.19 15.73 
LNGX 0 0 0 0.24 0 5.3 4.83 5.1 0.04 4.59 3.7 3.86 
MELX 0 0 0 0.76 1.6 7.27 7 6.91 1.87 5.9 5.39 5.31 
MOGX 3.2 0 2.85 2.99 0.95 7.89 6.06 5.66 0.81 5.28 8.65 8.23 
NXSX 0 0 0 5.17 0 4.29 1.09 1.18 0.02 5.15 3.62 3.73 
NWEX 0 0 0 0.87 0 4.16 5.08 5.46 0.34 3.67 5.21 5.58 
OEXX 5.64 6.73 21.78 4.42 0.79 3.88 3.57 3.72 0.33 5.34 5.86 6.04 
ROCX 12.3 0 10.23 5.93 0 3.15 0 0 0.04 4.62 0.12 0.42 
STOX 0 0 0 3.96 1.87 4.07 0 0 1.66 3.67 0.03 0.08 
TPTX 1.91 0 1.41 0.88 2.02 9.01 14.41 14.27 2.13 7.75 11.82 11.76 
WPLX 0 0 0 0 9.34 0 0 0 9.36 0 0 0 
APAX 24.9 14 0 25.34 30.9 6.42 7.64 7.53 30.78 5.28 6.19 5.95 
ORGX 22.04 46.13 41.28 17.56 32.46 5.6 3.52 3.57 31.38 4.5 2.11 1.89 
P-Risk 3.59 54.85 7.43 1.08 0.017 0.60 13.6 12.34 - - - - 
P-Ret -

0.028 
-0.028 -0.028 -0.028 0.013 -0.028 -0.028 -0.028 0.042 -0.015 -0.019 -0.019
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