20th International Congress on Modelling and Simulation, Adelaide, Australia, 1-6 December 2013
www.mssanz.org.au/modsim2013

Land use decisions under uncertainty: optimal strategies
to switch between agriculture and afforestation

C.Bao?,Z.Zhu?

aCSIRO Computational Informatics
Email: chenming.bao@csiro.au

Abstract: When carbon pricing is part of the economical landscape, agricultural land has the extra option to
sequester carbon through afforestation. There is a trade-off between the profits from traditional agricultural
crops and from the afforestation income through carbon trading.

In this paper we study the optimal switching strategies between agricultural production and afforestation of
agriculture land. The future commodity prices of agriculture products and carbon price are simulated via
stochastic asset models. These commodity prices are the risk factors in evaluating the trade-offs between
growing crops and afforestation. We model the value for the landholders to change land usage from agriculture
production to afforestation, at a sequence of decision making time (annually), as a real option. We employ the
least squares Monte Carlo algorithm to calculate the maximum expected value of this land use option, and more
importantly, to determine the optimal time to switch land use (stopping rule) and the conditions of switching
at each decision time (exercise regions). The valuation framework is based on finding the optimal switching
time to maximise the expected discounted cash flow under the uncertainty of the multiple risk factors.

Keywords: Optimal stopping, least squares Monte Carlo, land use, real options, American option, Bermudian
option, afforestation
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1 INTRODUCTION

The Australian Carbon Farming Initiative scheme (CFI) provides farmers, forest growers and land managers
with opportunities to gain income by sequestering carbon or reducing emissions through changes to agricul-
tural land management practices. Recent research has been dedicated to the landholders decision making to
switch between the agricultural production and the carbon afforestation, see, for example, Paterson and Bryan
(2012), Polasky et al. (2008), Bryan et al. (2011), Dymond et al. (2012). However, few have considered the
embedded real options in the land use such as options to defer investment, abandon options and options to
extend.

In this paper, we consider land under agricultural production with potential use for carbon farming through
afforestation. We quantify agriculture-carbon trade-off as real options of American style (American style
option is an option which the holder can exercise at anytime during the tenor), by assuming the land use can
be switched at anytime between carbon forestry and traditional agricultural production within a finite time
horizon. Our objective is to find the optimal stopping time for land use switching in order to maximize the
value of the potential land production.

We solve this optimal stopping problem using stochastic dynamic programming by working backwards re-
cursively. In particular, the least squares Monte Carlo (LSM) approach is applied to find approximation of
continuation functions for the Bellman equation. LSM is introduced initially by Longstaff and Schwartz
(2001) as a numerical methodology to value American or Bermudian options by a least-squares regression.
The option’s optimal exercise boundaries provide the optimal decision rule for the portfolio as a function of
values of the risk factors.

The prices of carbon allowance units and agricultural products are considered as uncertain risk factors. We
construct multi-variable stochastic asset models for these risk factors based on historical and projected future
price data. We use a 2km x 2km unit of land in the Lower Murray area of Australia as a case study in this
paper.

The contribution from this paper is threefold: firstly, we introduced a land use model with embedded real
options to start afforestation at a sequence of decision time; secondly, we demonstrate the use of LSM as
a numerical technique to solve the optimal switching problem for carbon afforestation, and finally, through
numerical results, we use a realistic case study to demonstrate effectiveness of the presented solution approach.

The remainder of this paper is organized as follows. Section 2 presents details of the land use model and the
real option valuation model. Section 3 defines the stochastic asset models for the risk factors and discusses the
model calibration procedure. Finally in Section 4, we present the numerical results of current methodology of
relying on LSM to assist with optimal decisions. Summary is provided in Section 5.

2 LAND USE MODEL

Consider a finite time horizon [0, T'] with sequence of discrete time 0 = tg < ¢; < ... < t,,, = T. The agent
(landholder or farmer) who owns a unit of land can use the land to produce agricultural products such as food
crops or fibre products such as cotton, or they can reafforest the land for carbon sequestration. The unit of land
is not subject to partial usage.

We assume that the agent makes his decisions at each discrete time {¢;,7 = 0,1, 2, ..., m} to start afforestation
or to continue producing agricultural commodities. An important assumption is that once the land is used as
carbon forestation, the agent cannot switch the land use in following N years. Here, for ease of explanation,
we use barley as the agriculture crop from which the agent needs to decide if and when to switch to forestation
for carbon permit.

Given a probability space (€2, F, P), the expected excess value (EEV) by carbon afforestation over a N-year
period is calculated as:

N
(X0, Yy) =E Y e (Xipatups — kg — Yiabros + ki) [Fe| — K )

s=1

where X, and Y; are the carbon price and the barley price at time ¢; r is the discount rate; the carbon seques-
tration rate g; and the barley production rate p; are known non-random functions; kg, kf are the maintenance
costs for carbon forestation and agriculture production, & is an initial lump sum capital cost for starting carbon
afforestation at time ¢, E[-|F;] is the expectation conditional on the information available at time .
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When the expected excess value by carbon afforestation ¢;,, ¢ = 0,1, ...m , is positive at any decision time ¢,
switching land use to afforestation is expected to be profitable for the landholder.

Assume a class of stopping time 7 with values at ¢,,, n = 0, 1, ..., m, the real option value of the afforestation
option for the landholder becomes:

Vi(Xy, ;) = sup E |e ") max{¢, (X, Y;), 0} F |, )
T€T

where E[-|F;] is the expectation conditional on the information available at time ¢. We are interested in
calculating the value of V;(Xy, Y)) in formulating the optimal stopping time class 7. This can be determined
recursively by dynamic programming.

3 A CASE STUDY

To solve the optimal stopping problem for switching the land use from agriculture production to forestation,
we adopt the Least Squares Monte Carlo (LSM) algorithm discussed in Longstaff and Schwartz (2001).

For simplicity, we assume the landholder makes decisions on land usage on an annual basis. For demonstration
purposes, as an example, we assume the first possible date for forestation is January 1st 2011. We set the last
possible decision date as T' = 20 year (2011-2031), the minimum carbon forestation term is set as N = 60
years. We use 100, 000 simulated economical scenarios, each scenario containing 80 years (T+N) trajectories
of the future prices for the crop barley and the carbon commodity prices.

3.1 Stochastic Models

We use two types of stochastic asset models for carbon permit allowance price X, and barley commodity prices
Y;. The model we used for carbon price X; is a mean-reverting process (MR):

din X; = (6; — alnX,)dt + o;*dWy, (3)

where W1 is a Brownian motion, atX , 0; and a are constants.

The model type for Y; is a geometric Brownian motion(GBM) represented by the stochastic differential equa-
tion:

dY; = pYdt + oy Y dWy, 4
where W5 is a Brownian motion independent to W1, i and oy are constants.
3.2 Carbon Allowance

Despite the growing interest on research of carbon price dynamics, the viability of carbon trading is still a hot
topic, and it is difficult to estimate the price of carbon emissions in the long term. One of the reasons for such
an uncertainty about carbon trading is due to the unpredictability of future political landscape across many
countries, see Thomson Reuters Point Carbon (2013) for some interesting surveys on the EUA market and
the development of emerging carbon markets. On August 28th 2012, the Australian Department of Climate
Change announced a plan to link-up with the EU Emissions Trading Scheme (EU ETS) from July 1st 2015
onwards, Australian firms will be allow to use EUAs as domestic compliance with up to 50%. Australian
Emission Trading Scheme (AETS) will then be fully link with the EU ETS from July 1st 2018.

To calibrate the stochastic model of carbon price (3), we use three trajectories (“CPRS-5”, “CPRS-15" and
“Garnaut-25”) of the future carbon prices forecasts projected in Australian Government Treasury (2008). We
assume the three scenarios appear with equal probability and use these carbon forecasts as approximations of
the futures prices to calibrate the stochastic models following a framework described in detail by Zhu et al.
(2009). The calibrated parameters are shown in Table 1, where ;X and 6 are piecewise linear term structures.

3.3 Market Price for Commodity Barley

To estimate the parameters of the stochastic asset model (4) for barley, we use the historical monthly barley
spot price data from World Bank. The full range of monthly price data runs from June 1983 to April 2013,
representing 359 end-of-month observations. In order to estimate the market price of risk, we follow the
methodology introduced in Hull (2009). However, instead of using capital asset pricing model of the stock
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Table 1. Calibrated parameters for the carbon price model.

Time t ag( a 0;
1/01/2011  0.230431619 0.051025291 0.1576169
1/01/2016  0.27094448 0.181792469
1/01/2022  0.24228286 0.200496676
1/01/2027 0.225186198 0.208203645
1/01/2033  0.184822735 0.222013825
1/01/2038  0.22968032 0.232877684
1/01/2044  0.214909639 0.243155728
1/01/2050  0.24940403 0.255640355
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Figure 1. Sequestration rate.

market, we use Commodity Food Price Index from the International Monetary Fund as the market portfolio for
barley. The calibrated parameters in Eq (4) are ;1 = 0.0324 and oy = 0.2397 with production rate p; = 3.5
and maintenance cost k2 = A$600.

3.4 Carbon Sequestration Rate and Discount Factor

Carbon sequestration rate varies over time by following the growth curves of individual trees. We use
the carbon sequestration rate derived by Paterson and Bryan (2012) in which a von Bertalanffy-Chapman-
Richards(vBCR) growth curve of Eucalyptus kochii is modelled with 3-PG using average monthly rainfall and
temperature values, and representative soil parameters for the Lower Murray area in Australia. Figure 1 plots
the carbon sequestration rate per unit of land subject to the age of the forest. We assume the landholder starts
carbon afforestation with forest aged zero. The maintenance cost for carbon afforestation is kf = A$33 and
initial cost k&§ = A$2000.

In this case study, we assume a constant bond yield, and use the Australia 15 Year bond yield which is 3.74%
at the time of this study (May 2013). However, bond yields in term-structure form can also be readily used in
the current implementation.

4 RESULT AND DISCUSSION

We discuss the numerical results in the following three subsections: firstly, we consider the realistic afforesta-
tion decisions based on the continuation functions estimated through LSM. We then comment on the selection
of basis orthogonal functions for LSM and numerical solution algorithms. Finally, we close with a discussion
of some possible future studies.
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Table 2. Results of LSM of afforestation options using Nominal orthogonal up to order 3.

Start Date  End Date NPV ErrorEst  Exercise Probability  Real Option Value

1/01/2011  31/12/2070 11741.71  167.713 0 19345.97
1/01/2012  31/12/2071 11785.92 172.7519 0.00309
1/01/2013  31/12/2072 11830.93  178.4251 0.00428
1/01/2014  31/12/2073 11869.22  182.82 0.0173
1/01/2015  31/12/2074 1189297 187.6787 0.01498
1/01/2016  31/12/2075 11901.65  192.205 0.02009
1/01/2017  31/12/2076  11891.19 196.7797 0.04098
1/01/2018  31/12/2077 11864.21 201.7603 0.06217
1/01/2019  31/12/2078 11824.29 206.9029 0.02084
1/01/2020  31/12/2079 11771.92 211.8061 0.03126
1/01/2021  31/12/2080 11710.22 216.6348 0.06191
1/01/2022  31/12/2081 11641.54 221.1649 0.08456
1/01/2023  31/12/2082 11569.75  226.2799 0.07232
1/01/2024  31/12/2083  11497.75 231.3692 0.07086
1/01/2025 31/12/2084 1142524 237.3384 0.0362
1/01/2026  31/12/2085 11353.99 244.1721 0.02505
1/01/2027  31/12/2086 11281.56 253.1888 0.0493
1/01/2028  31/12/2087 11210.67 261.9088 0.11856
1/01/2029  31/12/2088 11137.15  271.16 0.12384
1/01/2030  31/12/2089 11063 279.6139 0.14241

4.1 Option of afforestation

Table 2 shows some numerical results for the LSM calculation on the optimal time to switch from crop barley
to afforestation. Regarding the optimal stopping time for switching land use, we find that, 85,759 of the
100, 000 simulations (85.76%) landholders would exercise the option by afforesting the land in 20 years, most
of them would have exercised in the second 10 years period. In these cases, the payoff of real option on
exercise, i.e. switching, is higher than the waiting value or the so-called continuation value at the optimal
exercise time.

We can use the conventional decision making rule that is based on the expected future cash flow income (the
expected investment value or net present value (NPV) ) at each decision time: (Column “NPV” in Table 2)
from 1/01/2011 to 1/01/2030. As year 2016 gives the highest NPV value of 11901.65, year 2016 is naturally
the most profitable year to start afforestation. However the “Real Option value” we have calculated as the
American style real option on 1/01/2011 is in fact 19345.97, which is much higher than the NPV value of
starting afforestation at year 2016.

The NPV value for each future decision date is calculated as the accumulated sum of expected cash flows
for the next 60 years from the decision date. The NPV calculation relies on all future economical scenarios
stemming from the static carbon and barley prices at time ¢ = 0. However, the Real-option value at ¢t = 0
as listed in Table 2 is calculated by the LSM as the larger one of the NPV at ¢ = 0 and the expected future
continuation value if the switching decision is delayed to the next year ¢ = 1. In this case, therefore, the
Real-option value at ¢ = 0 includes the waiting value, and it is much larger than the NPV at ¢ = 0. By waiting
for new information, the landholder is able to add value from using any new information until the decision
time. Because the Real-option value is higher than the NPV value, i.e. the waiting value is positive, we should
not exercise or switch the land use at ¢ = 0, because if we do, the waiting value is lost.

For decision times ¢ > 0, the Real-option values at various possible future carbon and barley prices are differ-
ent, it is not possible to list these infinite number of Real-option values for all the possible future carbon and
barley prices. Additionally, the absolute Real-option values are only helpful in formulating optimal decisions,
it is more instructive to know the optimal decisions at future decision time ¢ > 0. In Figure 2, we use scatter
plots at each decision time to demonstrate the decisions at different carbon and barley prices at future decision
times. In Figure 2 we show that, on each decision year, 5000 simulated carbon-barley price pairs are plotted in
which green coloured ones represent cases of optimal time to start carbon forestation immediately, while the
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Figure 2. 5000 Monte Carlo generated samples of barley and carbon price pairs at time ¢t = 2, 3,,19. Points
in green are decisions to start carbon farming immediately while yellow ones are decisions to defer investment
and red ones are for not exercising the decision.

yellow coloured ones are cases of deferring the decision, whereas the red coloured plots are for not exercising
the decision. It is interesting to see the optimal exercise (switching) boundary presented graphically as a func-
tion of future market prices for barley and carbon. The optimal exercise boundary varies across each future
decision year. It is noted that the optimal exercise boundary in such a case study is two-dimensional, much
more complicated than the conventional one-dimensional American options of financial markets.

4.2 LSM Implementation

One important issue when applying LSM algorithm is the choice of basis functions. The selection of basis
function depends on the application in hand, this is the reason that LSM approach cannot be applied as a black-
box algorithm. The work of Longstaff and Schwartz (2001) suggests Laguerre(weight) as the basis orthogonal
function for single asset American put. Some studies of LSM algorithm have been focused on the robustness of
LSM estimation and its convergence under different basis functions. For example, Stentoft (2004) shows that
the LSM method is more efficient than finite difference or binomial model when valuing options on multiple
assets, and Monomials are suggested as possible basis functions.

For this paper, we have tested LSM with a set of different basis polynomial functions including Laguerre,
Nominal, Hermite, Hyperbolic, Legendre. We use the total standard deviation of the least squares residuals
as a measure of goodness-of-fit. We observe that essentially all the orthogonal functions provide compara-
ble results. For this particular example, Hyperbolic polynomials provide the lowest error among the 5 basis
polynomial functions. Note that, in theory, the higher order orthogonal fitting should give us a better fit-
ting. However, it is not the case in this example. One reason may be that the least square fitting algorithm
for multi-dimensional function is much less robust and higher order interpolation can potentially introduce
more interpolating errors. As a standard approach for selecting a numerical approximation method, we sug-
gest testing multiple possible orthogonal functions for each application before choosing the appropriate basis
functions.

4.3 Possible Future Research

It would be of interest to study optimal land use strategies when the landholder can switch back from carbon
forestation to agricultural production. To study this problem, one needs to make assumption on the cost to
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withdraw from the carbon farming initiative. One possibility is to assume a lump sum penalty payment when
closing down a carbon forestation. Once the land is registered for carbon sequestration afforestation, it is
locked for such purpose for a fixed time period (say 60 or 100 years), and any earlier change of land use will
result in a penalty to the landholder. The landholder might be required to buy back all the carbon emission
sold in the carbon market.

So far the model we’ve considered is for a single unit of land, and we assume that the market prices of carbon
and barley are not impacted by individual land production. In practice, with limited land resources, over
production of one product and the lack of others may lead to price fluctuation due to substantial change in
supply and demand. In addition, it will be valuable to consider decision rules of a portfolio, when multiple
units of land with embedded options form part of the portfolio.

5 CONCLUSIONS

This paper studies the agriculture-carbon farming trade-offs using a real options approach. When carbon price
is high, it is often profitable to switch from agriculture land use to the afforestation of land to sell carbon
emission permits. In this paper, we have presented a real-option methodology for selecting the optimal time
to switch the land use to carbon afforestation. The method can also be used to indicate optimal decision times
for switching at different future carbon and agriculture crop prices. It should be noted that the uncertainty of
future market prices for carbon and agriculture commodities are represented by stochastic models calibrated to
historical and estimated futures prices. The optimal investment time can be computed through the Least Square
Monte-Carlo (LSM) method by estimating a continuation function against an immediate exercise payoff value.
We have also discussed the robustness issues of the LSM implementation.

The case study in this paper shows that the waiting value through Real-option modelling can be significant
in decision making to maximise carbon farming investment. The conventional decision rules relying on NPV
can lead to investment decisions that are not optimal. We have also suggested some interesting future research
directions on making optimal decisions in land use.
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