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Abstract: The contemporary methodology for growth models of organisms is based on continuous 
trajectories and thus it hinders us from modelling stepwise growth in crustacean populations. Growth models 
for fish are normally assumed to follow a continuous function, but a different type of model is needed for 
crustacean growth. Crustaceans must moult in order for them to grow. The growth of crustaceans is a 
discontinuous process due to the periodical shedding of the exoskeleton in moulting.  

The stepwise growth of crustaceans through the moulting process makes the growth estimation more 
complex. Stochastic approaches can be used to model discontinuous growth or what are commonly known as 
“jumps” (Figure 1). However, in stochastic growth model we need to ensure that the stochastic growth model 
results in only positive jumps. In view of this, we will introduce a subordinator that is a special case of a 
Levy process. 

A subordinator is a non-decreasing Levy process, that will assist in modelling crustacean growth for better 
understanding of the individual variability and stochasticity in moulting periods and increments. We develop 
the estimation methods for parameter estimation and illustrate them with the help of a dataset from laboratory 
experiments. The motivational dataset is from the ornate rock lobster, Panulirus ornatus, which can be found 
between Australia and Papua New Guinea. 

Due to the presence of sex effects on the growth (Munday et al., 2004), we estimate the growth parameters 
separately for each sex. Since all hard parts are shed too often, the exact age determination of a lobster can be 
challenging. However, the growth parameters for the aforementioned moult processes from tank data being 
able to estimate through: (i) inter-moult periods, and (ii) moult increment.  

We will attempt to derive a joint density, which is made up of two functions: one for moult increments and 
the other for time intervals between moults. We claim these functions are conditionally independent given 
pre-moult length and the inter-moult periods. The variables moult increments and inter-moult periods are said 
to be independent because of the Markov property or conditional probability. Hence, the parameters in each 
function can be estimated separately. Subsequently, we integrate both of the functions through a Monte Carlo 
method. We can therefore obtain a population mean for crustacean growth (e.g. red curve in Figure 1). 

 
Figure 1: Growth trajectories of crustaceans 
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1. INTRODUCTION 

Crustacean fisheries, such as crabs, lobsters and prawns, play a vital role in global markets. A number of 
studies have been implemented to study the growth of crustaceans (Hoenig and Restrepo, 1989; Hartnoll, 
2001; Wahle and Fogarty, 2006). As Hoenig and Restrepo (1989) discussed estimation of inter-moult 
parameters from tag-recapture data, Hartnoll (2001) reviewed some improvements in methods to model 
growth of crustaceans. 

We consider two general problems in growth estimation, as a result of the moulting process. Firstly, the 
growth of crustaceans has a stepwise fashion that has hindered us from understanding the growth thoroughly. 
Secondly, the growth of crustaceans is determined by inter-moult periods and moult increments concurrently 
and therefore both processes should be integrated to describe the individual growth paths.    

The purpose of this paper is to introduce a stochastic growth component into a growth model that accounts 
for stepwise growth of crustaceans. A Levy process has right-continuous with left-limits paths, implying that 
the process has a countable number of jumps on a finite interval. Hence, an individual's growth can be 
modelled by a Levy process.  

A Levy process, X = (Xt)t≥0 is a stochastic process with the four properties, 
(i) P(X0 = 0) = 1. 
(ii) Xt is almost surely right-continuous with left-limits. 
(iii) For any s ≤ t; increments Xt − Xs have the same distribution as Xt−s.  
(iv) For any 0 ≤ t1 < t2 < ::: < tn < ∞, Xt2 − Xt1 , Xt3 − Xt2 , …, Xn− Xn−1 are independent. 

A number of papers reformulated growth models as the stochastic differential equations, but some models 
may predict negative size increments (Garcia, 1983). Therefore, we introduce a subordinator, which is a 
non-decreasing Levy process that can be used to model nondecreasing measurement in growth, e.g. length of 
crustaceans. We consider two examples from a class of subordinator for fitting the moult increment from 
tank data: the Gamma process and the inverse Gaussian process. By estimating the population mean and 
variance of the size increment, we can then average over the discontinuous growth paths to yield a population 
growth trend. 

2. STOCHASTIC GROWTH MODELS 

2.1 Subordinator  

A subordinator is a non-decreasing Levy process. It has no diffusion component, non-negative drift which 
means the individual never moves backward and non-negative jumps (Cont and Tankov, 2004). Let {Zt, t ≥0} 
be a subordinator starting from the origin such that Z0 = 0, the process is right continuous, and takes the value 
on [0, ∞). It has independent and stationary increments on [0, ∞). For t ≥ 0, Zt ≥ 0 and Zt1 ≤ Zt2 at t1 < t2, it is 
more convenient to look at the Laplace transform of Zt 

Mt(θ)= E(e−θZt),  θ ≥ 0.        (1) 

       = etl(θ), 

where l(θ) is the Laplace exponent. 

The Laplace transform in equation (1) will be able to estimate the mean and the variance of the subordinators 
easily. If Zt has a finite mean μ and finite variance σ2, then the first moment (mean) of the subordinator can be 
written as 

E(Zt) = μt,           (2) 

and 

Var(Zt) = σ2 t,          (3) 

where μ and σ2 are the mean and variance of Zt at t = 1. A subordinator can also take into consideration the 
individual and environmental variation. 

Russo et al. (2009) applied both Gamma and inverse Gaussian processes as examples of subordinators to the 
Atlantic herring population growth. We can make use of the subordinators to model the growth of 
crustaceans based on their statistical framework.  

A Gamma process is a subordinator following a Gamma distribution at time t with density in the form of  

f(x) = λαt xαt−1e−λx /Γ(αt)  ~ Γ (αt, λ),   x > 0,      (4)  
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for α, λ > 0 and f(x) = 0 elsewhere. The parameter α is the average rate of jumps and the scaling parameter λ 
controls the distribution of jump sizes.  

The Laplace transform of (4) is  

Mt(θ) = Ee−θZt = exp {−αt log λ/ λ+θ} 
        = (λ/ λ+ θ)αt .            (5)  

Hence, the first and second derivatives of (5) yield the mean and variance of gamma process.  

E(Zt) = αt / λ     

and 
Var(Zt) = αt / λ2.      

Next, we will look into the second example of the subordinator which is the inverse Gaussian process. While 
a Gaussian describes a Brownian motion's level at a fixed time, an inverse Gaussian process describes how 
long a Brownian motion with positive drift takes to reach a fixed positive level.  

Here, the subordinator given by Zt = √aBt + bt; t ≥ 0 where (Bt) is a standard Brownian motion with drift b > 
0 and a > 0. Then the first passage time of Zt for a fixed level α > 0 is 

Tα = inf{t ≥ 0 |Z0 = 0, Zt ≥ α}. 

Assuming Tα follows an inverse Gaussian distribution, where IG(μ, λ), with the mean and scale parameters 

μ = α / b, λ = α2 / a .  

The first passage time Tα for fixed level α has probability density function  

fα(x) = exp [(−b2x / 2a) − (α2 / 2ax)] αebt/a / √2πax3  .     (6)  

The Laplace transform of eqn (6) is 

Mα (θ) = exp [−α{√ (b2/a2) + (2θ/a) − b/a}] .  

The corresponding subordinator has a mean E(Zt) = μ = α / b, and variance = μ3/ λ = aα/b3, where a, b > 0.  
 
3. MODELLING THE STEPWISE GROWTH PROCESS  

The growth of crustaceans can be described by two processes, which are moult time interval (inter-moult) 
and moult length increment (moult increment). We need to account for the discontinuities or jumps due to the 
moulting process in individuals. In the past, researchers mainly focused on the study of continuous growth 
rather than on discontinuous growth processes (Chang et al., 2012). In this context, we will take into 
consideration two of the stochastic processes (inter-moult periods and moult increment) that characterize the 
stepwise trajectories of each individual. Subsequently, we can produce the corresponding population growth 
curve. 

We focus on two types of data: (i) tank data from rearing experiments and (ii) tagging data from 
tag-recapture experiments. Tank data consist of exact moulting times as well as increments from each 
moulting throughout the study. For tank data, it is relatively straightforward to estimate the size-at-age of 
animals since we observe their growth throughout the moulting process. We can also use tag-recapture data 
to estimate the growth parameters. 

First of all, we will construct a likelihood approach to accommodate the aforementioned growth parameter 
estimation. Suppose individual i consists of ni repeated measures {Li,j−1, Tij, Iij} from j=1 to ni where Li,j−1 is 
the jth pre-moult length, Tij is the jth inter-moulting time, and Iij is the jth increment length. Since each 
individual is measured at different times, a general density function is required to describe a sample of 
different lobsters. We define f(Li0) as an initial length function for an animal. We assume g(·) is a function of 
inter-moult periods and h(·) is a moult increment function, that both condition on pre-moult length and 
inter-moult periods. For example, if lobster i has moulted three times, we can derive the joint density function 
of inter-moult periods and moult increment as 

f ((Li2, Ti3, Ii3), (Li1, Ti2, Ii2), (Li0, Ti1, Ii1)) 
= f (Li2, Ti3, Ii3, Ti2, Ii2 | Li0, Ti1, Ii1) f (Li0, Ti1, Ii1) 
= f (Li2, Ti3, Ii3, Ii2 | Li0, Ti1, Ii1, Ti2) g(Ti2 | Li0, Ti1, Ii1) h(Ii1| Li0, Ti1) g(Ti1| Li0) f(Li0) 
= f (Li2, Ti3, Ii3| Li0, Ti1, Ii1, Ti2, Ii2) h(Ii2| Li0, Ti1, Ii1, Ti2) g(Ti2| Li0, Ti1, Ii1)  

x h(Ii3| Li0, Ti1) g(Ti1| Li0) f(Li0).       (7)  

568



Foo and Wang, Stochastic growth models for analyzing crustacean data 

Because Li1 = Li0 + Ii1, and Li2 = Li1 + Ii2, the function (7) can be written as 

f((Li2, Ti3, Ii3) , (Li1, Ti2, Ii2) , (Li0, Ti1, Ii1)) 
= f (Li2, Ti3, Ii3| Li1, Ti2, Ii2) g(Ti2| Li1, Ti1) h(Ii2| Li1, Ti2) h(Ii1| Li0, Ti1) g(Ti1| Li0) f(Li0) 
= g(Ti2| Li1, Ti1) h(Ii2| Li1, Ti2) g(Ti3, Ii3| Li2, Ti2) h(Ii1| Li0, Ti1) g(Ti1| Li0) f(Li0) 
= h(Ii3| Li2, Ti2, Ti3) g(Ti3| Li2, Ti2) g(Ti2| Li1, Ti1) h(Ii2| Li1, Ti2) h(Ii1| Li0, Ti1) g(Ti1| Li0) f(Li0) 
= g(Ti3| Li2, Ti2) g(Ti2| Li1, Ti1) g(Ti1| Li0, Ti0) h(Ii3| Li2, Ti3) h(Ii2| Li1, Ti2) h(Ii1| Li0, Ti1) f (Li0).  

In general, the joint density function for the ith individual can be written as 
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where the first term is for the inter-moult periods function, and the second term is for the moult increments. 
Parameters in g(·) and h(·) can be estimated by maximising the two parts separately. Therefore, the first and 
second term are asymptotically independent given pre-moult length and inter-moult periods. The next section 
will discuss the models of interest with respect to the inter-moult periods function g(·) and moult increment 
function h(·) separately. 

 
3.1  Modelling inter-moult periods from tank data 

Here, we know exactly the moulting time T of the animals. An estimator of the inter-moult periods follow a 
log-normal distribution will be considered in the growth model. Suppose log(T) is distributed N(μL, σ2), the 
mean of inter-moult period T is based on pre-moult length L− (Restrepo, 1989), therefore, we have 

μL = log(α) −σ2/2 + βL−,  

where α > 0 and β ≥ 0 are constants. There are three parameters to be estimated: α, β and σ. The likelihood 
for inter-moult periods is 
 

L(T| L−; α, β, σ) = ∏ ∏ [1/(σTij√2π)] exp (−[log(Tij)−log(α)−σ2/2+βLij ]
2 / 2σ2) . 

 
For simplicity we assume all the observations in j are independent for each sample i. Parameter estimation 
can be carried out by maximising the log{L(T| L−; α, β, σ)}.  
  
3.2  Modelling moult increment from tank data 

Let {Zt, t ≥ 0} be a subordinator, the time changing Levy process Lt = ZVt with the size-at-age of an animal 
denoted by Lt at time t, and the time transformation is followed a von Bertalanffy Vt = 1 − e−k(t−t0) where k is 
the growth speed and t0 is the age of fish at zero length (Russo et al., 2009). As discussed earlier, the 
size-at-age can be estimated as long as Zt has mean and variance based on equation (2) and (3) such that 

E(Lt) = μVt ,          (9)  

and 

Var(Lt) = σ2Vt ,          (10) 

where μ and σ2 are real numbers. Here, μ plays the role of L∞, thus the estimates follow von Bertalanffy 
growth function (VBGF) and possess monotonic increment behavior. However, we do not have information 
on age t0 of the individuals. The Fabens' method (1965) for estimating the size of animals will be used under 
the assumption that the ages are all unknown. The rearranged form of VBGF with its increment size of I is 

I = (l∞−L−) (1−e−kT) ,  

where l∞ are the parameters.  

Firstly, a Gamma process has mean μ= α(1−e−kT)/λ, and variance σ2=α(1−e−kT)/λ2. Thus α=λ(l∞−L−), the 

 N
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estimated increment length after time interval T from eqn (9) is  

E(I| T, L−) = (l∞−L−) (1−e−kT) ,  

and the variance of the increment length after time interval T from eqn (10) is  

Var(I| T, L−) = (l∞−L−) (1−e−kT) / λ .  

Subsequently, the likelihood of the increment lengths from the n animals is 
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where i is the individual, and j is the number of measurements in each individual.   

Secondly, we assume an inverse Gaussian distribution as in eqn (6), the mean and variance of a subordinator 
following an inverse Gaussian process are μ= (1−e−kT) /b, and variance σ2=α(1−e−kT) b2, where 1/b plays the 
role of (l∞−L−). Assuming the increment length to be {I|T, L−}, 

tVZ follows an inverse Gaussian process 

)/,/1( abaeIG kT−− , where L− is the pre-moult length of the individuals, and T is the moult time 

interval. The estimated increment length after time interval T can be written as in equation (9)  

 E(I| T, L−) = (l∞−L−) (1−e−kT) ,  

while the variance of the increment size after time interval T is 

Var(I| T, L−) = a (l∞−L−)3 (1−e−kT) .  

We could write the joint likelihood function on increment length at the time of n individuals as follows 
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where the estimated parameters are a, l∞ and k.  
  
Application and Numerical Studies 

A total of 75 lobsters (39 females, 36 males) were reared in tanks over a time span. The dataset was collected 
from 1995 to 1999 and included observations of the carapace length ranging from 6.3 mm to 158.3 mm. The 
growth of the lobster was recorded via moult time intervals and moult increments. The individual lengths 
increased monotonically for both females and males 
throughout the growing process (Figure 2).  
  

 
Figure 2: Growth length over years 1995 to 1999 
 

Figure 3 indicates that males and females grow similarly before premoult length of 100 mm and Table 1 
shows the parameter estimates through the maximum likelihood estimation. Females spent a longer time to 
moult than males as they grow older. Males appeared to spend shorter moulting periods to reach the maximal 

Figure 3: Estimation of inter-moult periods
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length in less than 300 days, whilst females took more than 300 days to obtain the same length as the males. 
However, females have a greater maximal length of over 150 
mm more than the males.  
Table 1: Parameter estimates of inter-moult periods using log 
normal model 

 
 

Figure 4(a) shows the carapace lengths of males and females increased but did not have significant 
discrepancy until the males have overtaken the females from the intermediate stage of the moulting process, 
thus the growth of female slowed down gradually. This implies that males have larger moult increments than 
females, indicating that males possess greater asymptotic length compared to females. As for Table 2 and 
Table 3, the growth rate of females is relatively faster than male lobsters, resulting in a lower length in L∞ for 
females. From biological perspective, once the females have reached maturity, their growth is said to be 
slowed down faster than males as more energy will be converted to reproduction purposes. From the plots, 
we notice both the Gamma processes and inverse Gaussian processes models share similar increment lengths.   

  

 
 
Figure 4(a): Moult increment estimates for: (i) Gamma process and (ii) inverse Gaussian process 
  
Figure 4(b) displays the variance for both processes respectively. However, those figures do not account for 
the fluctuation of the environment variability. Based on pre-moult length, variances of males were greater 
than females. However, the variability of the inverse Gaussian process is relatively higher than that of the 
Gamma process, specifically during the first 50 days. Therefore, some diagnostic tests ought to be 
implemented to determine which model is better in the overall context. 

 
 SEX L∞ a k 

Female 178.20 0.00017 0.00087 
Male 196.34 0.00016 0.00086 

 
Table 2: Parameter estimates for Gamma process     Table 3: Parameter estimates for inverse Gaussian  
 

 
Figure 4(b): Expected variance of (i) Gamma process versus (ii) inverse Gaussian process 
Once the parameters for the moult increments and intermoult periods processes are obtained, it is easy to 
integrate both processes as stated in eqn (8) via Monte Carlo approach. The step-like growth trajectories are 
made up of moult increments associated with time intervals between moults. The purpose of this study is to 
simulate a large sample of observations to estimate the population mean growth curve. The simulation studies 
were implemented in R. Eventually, we find out some interesting features from the plots as shown in Figure 

SEX α β σ 
Female 37.18 0.0150 0.6367 
Male 39.30 0.0139 0.5829 

SEX L∞ λ k 
Female 175.38 0.6199 0.00083 
Male 258.45 0.6179 0.00056 
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5, the growth pattern shows a monotonically increasing function. In this context, it implies that the 
aforementioned model and approach is plausible and sensible in the real data analysis. Comparatively from 
the plots, the males surpass the females to have a bigger size (length, mm). The drawback of the previous 
subordinated stochastic process is where the assessment of the size-at-age only considered for the growth 
length (increment) at a given time without considering moult interval. We could make some improvement of 
the underlying model by deriving a joint density function between moult increment and moult interval by 
applying the Monte Carlo approach.  

        

 

Figure 5: Simulation of growth for 20 tank spiny lobsters by Gamma process  
 
 

The most commonly used approach to describe the relationship between length and age in fisheries is known 
as the von Bertalanffy growth function (VBGF). However, this deterministic function does not account for 
the individual variability. In view of that, Russo et al., (2009) provided a new solution to curb the above 
problems where a subordinator is included in VBGF for stochastic models. The model considers variability 
of individuals as well as environmental sources.  

Numerous approaches are available to estimate the growth parameters. In addition to tank data, tag-recapture 
experiments are commonly used for growth parameter estimation of the individuals. For animals reared in the 
tank, the moulting times can be observed directly, however, the exact moulting time is unknown during the 
periods from when the tagged animals are released to the sea until they are recaptured.    
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