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Abstract: Realistic image-based 3D reconstruction of narrow plants, such as wheat and barley, is challenging
because of plant’s lack of a well defined surface, complex self-occlusions, and high degree of self-similarities.
In this paper we present a new approach for image-based modeling of plants using a pair of cameras in a stereo
setup. Our key idea is that while color and texture features are unlikely to match across images, local leaf
shape, in particular the shape of its boundary curves, will. We propose a stereo matching algorithm that uses
boundary curve features to build a dense depth map. We show that the local orientation of boundary curves
can be used to recover the 2D leaf structure of plants, which in turn can be used for matching plant leaves
across multiple views in a narrow baseline stereo setup. The proposed method is robust to slight movements
of the leaves during imaging, which is an important concern in phenotyping narrow and fragile-leaf plants. We
demonstrate results on a number of plants with varying complexity and discuss the performance and limitations
of the proposed framework.
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1 INTRODUCTION

Plants are ubiquitous in nature and in urban environments. 3D plant models are used in many application
areas including agriculture, plant biology, architecture, urban modeling, games and movies. Many methods
have been developed for the creation of geometric plant models to enrich the realism of virtual environments
(Deussen and Lintermann (2010)). In the past few years however, there is a growing interest in precise 3D
modeling of plants from real-world data for biological studies. In such scientific fields, one is interested in
measuring automatically, in a non-destructive manner, plant properties such as number of leaves, plant size,
leaf shapes, and the 3D structure of the plant. One would like also to analyze and model the variation of these
properties during the growth process and in response to various environmental factors, such as soil, weather
and light conditions, and to the presence of obstacles.

Typical plant modeling techniques are procedural and are based on carefully designed growth rules
(Prusinkiewicz and Lindernmayer (1990); Deussen and Lintermann (2004); Talton et al. (2011)). Others,
such as sketch-based techniques (Anastacio et al. (2006); Quan et al. (2006); Okabe et al. (2007); Chen et al.
(2008)), are interactive, offering the user control and possibility to design the shape of the plant. Although the
degree of realism of models created with these methods increasingly improved over the past few years, none
of them is suitable for plant scientists who want to use for their studies accurate 3D reconstructions of actual
plants. At the other end of the spectrum, image-based techniques have the best potential for producing realistic
and accurate 3D plants, since they rely on images of real plants.

There exists a wide body of literature on image-based 3D modeling of real plants. Most of the published algo-
rithms rely on either shape form silhouettes, known also as visual hull (Kutulakos and Seitz (2000); Yous et al.
(2007)), or multi-view stereo matching (Seitz et al. (2006)). Visual hull techniques require accurate calibration
and synchronization of the cameras. Rotating the plant is not feasible since the plant may undergo non-rigid
motion (due to wind). In addition, given the high degree of occlusions in plants, visual hull techniques cannot
generate accurate 3D models. Mirror-based systems (Kumar et al. (2012b)) overcome some of these limita-
tions however one looses in the plant resolution. On the other hand, multiview stereo matching techniques
rely on feature matching across multiple views of the same plant. However, observed color pixels cannot
be matched efficiently across multiple viewpoints since plants exhibit high degree of self occlusions and self
similarities. In addition, smoothness constraints along epipolar lines are not applicable when reconstructing
plants, since plant leaves are very narrow and thus discontinuities are abundant in plant images.

In this paper we address the image-based plant modeling problem that is fully automatic. We focus on plants
with narrow leaves, such as wheat and barley, which exhibit high degree of self occlusions and self similari-
ties. Since individual plant leaves and their features are extremely fine and self similar, they cannot be reliably
matched across multiple views. Our key insight is that, in a narrow baseline setup, local orientations of leaves
provide stable features across adjacent views. We use this property and propose a single-shot 3D plant model-
ing system that uses consumer digital cameras. Our reconstruction algorithm analyzes the captured images and
computes orientation fields, which represent at each pixel the direction in which there is the strongest oriented
plant feature. Using these fields, individual plant leaves are traced then reconstructed and refined in 3D using
multi-view stereo. We show that the orientation field, which varies smoothly along leaf boundaries, can be
used to automatically recover the plant structure from a single image. This will provide plant scientists with
an efficient tool for analyzing the plant structure, counting the number of leaves and measuring their length
and surface area. Finally, the advantage of performing stereo-matching using orientation features lies in their
robustness against view-dependent appearance of plant leaves and in their uniqueness. We demonstrate this
algorithm on plants with various levels of complexity.

2 METHODOLOGY

We use high-resolution RGB cameras arranged in a narrow baseline stereo setup and placed at roughly1.5m
distance from the plant, close enough to capture the plant surface. After background subtraction (Section 2.1),
we compute an orientation field and a confidence map for each image (Section 2.2). We then recover the 2D
structure of the plant on the images by an efficient integration of the orientation field (Section 2.3). Finally,
we formulate the stereo correspondence problem as the problem of matching curves across the pair of images
and propose an algorithm for solving it (Section 2.4). We present the experimental results in Section 3 and
conclude in Section 4.
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(a) Foreground image (b) Orientation mapΘ (c) Thinning (d) Plant mapH
and score mapF

Figure 1. Plant image analysis process: (a) background subtraction, (b) orientation and score maps. Color
indicates the orientation angle while intensity represents the magnitude of the maximum filter response, (c) r
non-maxima suppression of the score mapF , (d) the plant mapH . (The figure is best viewed in color).

2.1 Plant segmentation

The first stage of the processing is to segment the plant (the foreground) from the image (background). This
problem known as background subtraction as been extensively investigated in the literature (Kumar et al.
(2003)). In this paper, we learn in a supervised manner the foreground and background using Gaussian Mixture
Models (GMM). We use few manually segmented images (typically one to three) as our training set. Let
{FG,BG} be the two states (foreground, background) of an image pixels. The distributionP of s may be
modeled as a weighted sum ofm Gaussians:

P(s|Φ) =
m
∑

k=1

αkP(s|k, θk), (1)

whereΦ = {α1, . . . , αm, θ1, . . . , θm}, θk = {µk,Σk} are the parameters of thek−th Gaussian,αk are the
mixing coefficients that sum to one, andm is the number of Gaussians in the model. In our experiments we
found that one GMMf , with m = 1 for the foreground and one GMMg, with m = 3 for the background
provide good segmentation results. We classify a pixels as foreground if the ratiof(s|Φf )

g(s|Φg)
is larger than one.

Φf andΦg are the parameters off andg, respectively.

To learn the background model of Equation 1, we first select few images taken in similar conditions as in
the system usage, manually segment them using interactive tools, such as Poisson Image Editing of Pérez
et al. (2003), and fit a GMM of three Gaussians to the background and one Gaussian to the foreground. In
practice, we used as few as three images for training. Note that the training stage should be executed whenever
the acquisition conditions (background type, lighting conditions) change. Note also that the segmentation
procedure may produce some background noise, which we eliminate using morphological operations.

2.2 2D orientation fields

An oriented filter kernelKθ is a kernel that is designed to produce high response to features that are oriented
along the directionθ when it is convolved with an image. Similar to recent work on hair modeling (Luo et al.
(2012)), we define the orientationΘ(x, y) of an imageI at pixel(x, y) as

Θ(x, y) = argmax
θ

|Kθ ∗ I(x, y)| . (2)

We define also the maximum response of the filter as

F (x, y) = max
θ

|Kθ ∗ I(x, y)| . (3)

In what follows,Θ is referred to as the orientation map andF as the score map. Next, we apply non-maxima
suppression on the score mapF ; the score of a pixel is set to zero unless it is the maximum score in direction
orthogonal toθ. The resulting map is thresholded, obtaining a binary mask, and converted into a plant mapH :

H(x, y) =
1

1 + d(x, y)
, (4)
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Figure 2. Tracing the vector field for recovering the plant structure using standard vector field integration (top
row) and using the algorithm proposed in this paper (bottom row). Note that despite the overlap of several
narrow leaves, our approach (bottom row) is able to track them correctly.

whered(x, y) is the Euclidean distance to the closest foreground pixel in the binary mask.H takes a value of
1 where a line feature is present. It decays quickly when moving away from the image features.

We have experimented with several orientation filters, such as Gabor and Difference of Gaussian (DoG) filters.
In practice we found that DoG filters provide better orientation fields. Thus, we defineK0 as:

K0(x, y) = (Gσ(x)−Gσ′ (x))Gσ′ (x), (5)

whereGσ is a one-dimensional zero-mean Gaussian with standard deviationσ. Similar to Luo et al. (2012),
we setσ = 1 andσ′ = 2. The oriented filtersKθ are generated by rotating the originalx−aligned filterK0

with anglesθ ∈ [0, π). In our experiments we use180 different orientations, one every degree. The plant
mapH and orientation fieldΘ are important since they will be used to recover the structure of the plants from
single images and for 3D reconstruction and modeling. Figure 1 summarizes this pipeline and shows examples
of orientation and plant maps.

2.3 Recovering the plant structure in 2D

Recovering the structure of plants, especially narrow-leaf ones, from 2D images is very challenging because
of the high degree of self-occlusions and self similarities. We propose in this section an algorithm that traces
the plant leaves, starting ideally from the tips, and recovers an estimate of their 2D structure from a single
image. Tracing is based on the orientation fieldΘ and the plant mapH .

First we select a pointps(xs, ys) with H(ps) = 1 as a seed point and grow it in a direction that is determined
by the orientation mapΘ. Naive integration ofΘ does not recover correctly the plant structure as shown in
Figure 2 (top row). Instead, we follow an approach that is similar to Beeler et al. (2012) for hair modeling. Let
p(x, y) be the last point on the reconstructed curve. We define a growth cone∆(r, γ) with growth resolution
(cone’s height)r and opening angle2γ. The cone’s apex is placed atp(x, y) and its principal axis of symmetry
is oriented in the directionΘ(x, y). Pixels falling inside the cone define potential growth candidates. For each
potential growth candidatepi(xi, yi) we compute a score:

ζ(pi) =

(

1−
|dθ|

2γ

)

H(pi), (6)

wheredθ is the angular deviation between the vectorsv = (cos θ, sin θ)
t andvi = (cos θi, sin θi)

t, θ =
Θ(x, y) andθi = Θ(xi, yi). At each iteration we add to the curve the pixel with the highest score and repeat
the procedure starting from the newly added pixel. We iterate until the maximum score of candidate pixels is
lower than a threshold value, which we set to0.1 in our experiments.

The proposed procedure depends on several control parameters. The opening angleγ controls the strength of
curvature that is tolerated. In our experiments we found thatγ = π/12 achieves good results on the plant
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Figure 3. Recovered 2D structures from a single image. First and third rows show the input images after
background subtraction. The second and fourth rows shows the recovered plant structure.

images we have experimented in this paper. The growth resolutionr depends both on the thickness of the
plant and on the image resolution. The smaller the value ofr is, the less robust is the tracing procedure to
self-occlusions. Large values, on the other hand, may lead to errors in the tracking. In our acquisition setup
and with images of size764× 1148 we found thatr = 50 provides good results.

The selection of the initial pointps (the seed point) is very important. In our implementation we choose them
to be the leaf tips, which can be efficiently detected using tip detection procedures such as the one proposed
by Kumar et al. (2012a). Curves at the tips however have high curvature and thus they should be treated with
a special care. In our implementation, in the first five iterations of the algorithm we set the opening angle
γ to π/6. After the five iterations,γ is reset toπ/12. This enables us to automatically seed the integration
procedure, while producing plausible results in most of our experiments, see Figure 3 for some examples.

2.4 Curve-based stereo matching

In this section, we focus on recovering the 3D structure of a plant using a stereo matching algorithm that is
based on matching curve segments. Our key insight is that in the presence of high degree of self-occlusions
and self-similarities, color-based stereo matching would fail to recover accurate 3D structure of the plant. We
instead rely on the local orientations of plant features, which provide reliable matches in a narrow baseline
setup. Below, we elaborate further on this idea.

Image rectification. Rectification is the process of projecting the stereo images onto a common image plane
in such a way that the corresponding points between the two images have the same row coordinates. This
process is particularly useful for stereo matching, because the 2-D stereo correspondence problem is reduced
to 1-D problem: given a point in the left image, its corresponding point on the right image can be found by
searching left of his location along the same line. There are several techniques that can be used for rectification.
When camera parameters are available, computed in a calibration step for instance, one can use the algorithm
of Fusiello et al. (2000). In the experiments presented in this paper we use the non-calibrated version of the
algorithm proposed in Fusiello and Irsara (2011). In both the calibrated and uncalibrated cases, the Matlab
source codes are available for download at the authors website.
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(a) Leaf correspondences across three consecutive frames.

(b) Correspondences across two consecutive frames.

Figure 4. Leaf correspondences computed with our matching algorithm. Correspondences are color-coded.

Curve matching. Once we have rectified our pair of images, search for correspondences is restricted along the
horizontal raster lines. There are various techniques to recover a dense disparity map of the object of interest.
The most common approach is to use dense pixel-based stereo matching. However, our objects of interest are
narrow plants, such as wheat and barley, which are composed of narrow textureless leaves, with high degree
of self-occlusions and self similarities. Thus, standard pixel-based stereo matching does not provide efficient
3D reconstructions. Instead, we propose a curve-based technique that recovers the 3D structure of the plant.

We match all pairs of curves after pruning pairs whose raster line intervals do not overlap. We then assign
for each pair of curvesci andcj , ci from the left image andcj from the right image, a matching scoresij
equal to the number of pixels where their local orientations are similar. Using these scores, we compute the
three-nearest neighbors for every curve and retain the best reciprocal match. Similar to Sinha et al. (2012),
since the images are rectified, pixels where matching curves meet each raster line must correspond. Thus, the
computed set of curve correspondences specifies a set of pixel correspondences.

3 RESULTS

Figure 3 shows few results of plant structure recovery from 2D images. In these examples, the images are of
the same pot that contains three wheat plants. Each plant has three leaves. Thus, in total we have nine leaves
with relatively high level of intersection and overlap. The images are taken around the plant by rotating every
time the pot with approximately ten degrees. Thus the plant leaves may undergo some non-rigid deformations
due to interaction with wind. As we can see in Figure 3, our algorithm is able to trace the leaves in most of the
cases despite the high degree of overlap and self-occlusion.

Figures 4-(a) and (b) show results of our curve matching procedure. In Figure 4-(a), we use the first three
frames of Figure 3, while in Figure 4-(b) we use the fifth and sixth frames. We can see that our algorithm can
match correctly the leaves despite the high degree of occlusions and non-rigid motion of the leaves. Figure 4-
(b) shows also some limitations of our algorithm. In fact, when two leaves merge together and then split, our
algorithm fails to track them correctly. We plan to address this issue in future works.

4 CONCLUSIONS

We proposed in this paper an algorithm for recovering the structure of narrow-leaf plants and for matching
plant leaves across multiple views. We found that, in absence of color or texture features, local orientations of
plant leaves provide reliable features for computing stereo correspondences, which is the first step towards full
3D reconstruction. We plan to extend our approach to handle complex plants at their late growth stages, where
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the plant can have many leaves, and explore multi-cue matching as in Kumar et al. (2007). We will explore
other applications of the orientation fields, such as non-photo realistic rendering (Ning et al. (2010, 2011)).
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