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Abstract: For scientists, a model is typically a set of mathematical formulae that describe some natural
phenomena of interest. One approach, often preferred by applied mathematicians, engineers, and physi-
cists, is to discover physical laws of nature and express them as deterministic mathematical relationships
among quantities that comprise such laws. At the opposite end of the spectrum, physical laws that gave
rise to the data may be of little concern to students in an undergraduate statistics course, whose emphasis
is on discovering empirical relationships among observable quantities and construct regression models
that relate both observable and unobservable quantities, including random noise. Practising statisticians
express known physical laws in their regression models; what makes a regression model empirical is that
the behaviour of deviations (noise) from the mathematical formulae is an integral part of the model itself.
For years, Bayesian hierarchical modelling has been the statistical framework of choice to integrate empir-
ical and deterministic modelling. Bayesian melding is a more recent alternative statistical framework: it
expresses physical laws as laws, thus without explicit noise terms, yet it still allows the focus to be placed
on the behaviour of random quantities. In this overview, we discuss some philosophical underpinnings
of the Bayesian melding approach, and through a toy example we illustrate the nuances of formulating a
Bayesian melding model. We list some published and ongoing research in ecology, economics, engineer-
ing, epidemiology, and population dynamics that employ Bayesian melding; these examples suggest the
potential for Bayesian melding to unify deterministic and statistical modelling approaches in general.
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1 INTRODUCTION

Various modern scientific disciplines heavily involve interdisciplinary research by computer scientists,
economists, engineers, mathematicians, physicists, and statisticians, among scientists in other fields; cli-
mate science is perhaps the poster child. While inherent differences among disciplinary philosophies
can hinder scientific progress (Shaman et al., 2013), there is substantial common ground shared by these
quantitative disciplines upon which joint effort can be built. Indeed, academic training in most of these
disciplines invariably includes case studies in which 1) a set of mathematical formulae is devised to re-
flect some phenomenon, 2) data are being/have been collected and analyzed to justify the mathematical
formulation, and 3) an implementation of this formulation is compared to the data in the context of cali-
bration, or identification of what parts of the formulation require improvement. Step 1 is an integral part
of modelling, whether the phenomenon be biological, chemical, physical, social, etc. Data are central
to Step 2, an endeavour that is inherently statistical in nature. Step 3 ranges from very simple (e.g., cal-
culating by hand a standard error according to some textbook formula and/or displaying observed data
over model output then assessing the agreement visually) to highly complex (e.g., software engineers de-
veloping computer packages tailored to the specific model then domain scientists applying the software
to produce model output for rigorous assessment of model adequacy with respect to observed data). In
practice, Step 3 often feeds back into Step 1, and the whole process is iterated, constituting model refine-
ment. Not only is this interdisciplinary approach already fundamental to many individual disciplines, it
is employed typically early in a science education.

A physics student’s world view. A simple example is the following experiment, similar to which many
readers would have run in secondary school to determine the gravitational acceleration g of a free falling
object. In the experiment, the student releases a marble onto a floor mat from an adjustable platform fixed
at each of 6 different heights between 0.5 and 3.5 metres, at 60-cm increments. The platform and floor
mat are connected through an electrical circuit that detects and displays the time elapsed from release
to impact. The student enters the 6 readings on a computer spreadsheet to produce a plot resembling
Fig. 1(a). The student is also instructed to transform the time recordings by squaring them, produce a
new plot from the transformed data, run a linear regression through these data, then overlay the estimated
regression line and associated confidence bands onto the plot, such as Fig. 1(b) with the red output. The
final steps of the experiment are to estimate g by inverting the slope estimate, and to apply a textbook
formula to obtain the error bar range for g.

The purpose of transforming the data may seem obvious enough to the student: the very definition of
acceleration relates distance to the square of time. Similarly, the regression analysis helps to determine
the “best” estimate of g based on the 6 observed data points. Yet, under the pressure of time, the student
may scramble to carry out all steps as required by the experiment, let alone taking the time to fully
appreciate the mysterious R2 statistic, error bar for g, and confidence bands around the regression line.
Perhaps a more pressing concern to the student is that the experiment was conducted correctly, in which
case the estimate of g should be close to the textbook value of 9.81 and the R2 value, close to 1.

Two statistics students’ world views. In contrast, consider an introductory statistics course in which
each student conducts an experiment with the same apparatus to empirically estimate the relationship
between the height (m) of free fall and time (s) spent in the fall, but in the absence of any instructions on
data transformation. Upon seeing Fig. 1(a), Student A proceeds to fit a linear regression, feels satisfied
thatR2>0.98, and reports the estimated relationship as “time = 0.186 + 0.123× height” with a p-value of
0.000. Unlike A, Student B regresses square-time on height, and produces the result in Fig. 1(b) in grey,
also with p-value=0.000. Both A and B are just as concerned as our physics student about running the ex-
periment correctly, but what means do they have against which to gauge their empirical results? Realizing
that their results differ drastically but class time is up, the two submit their reports in a cold sweat.

A realistic modeller’s world view. Obviously, the above scenarios do not fully reflect the world views
of practising physicists and statisticians. However, they shed light on the two ends of the spectrum of
world view held by a quantitative modeller: 1) Mechanistic understanding informs the functional form
that relates quantities of interest, and the objective is to determine the numerical values that specify
the relation as a set of explicit formulae; data analyses are employed to justify the resulting formulae.
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Figure 1. (a) Time elapsed (s) plotted against fixed height (m) from a hypothetical free-fall experiment.
(b) The same data after square-transformation of time; linear regression lines (solid) and 95% confidence
bands (dashed) are shown along with the estimated x-to-y formulae, the R2 statistics, and the estimated
g with error bar ranges: grey for regression with intercept and red, without intercept.

2) For descriptive and predictive purposes, the underlying but unknown functional form can be approxi-
mated purely empirically (based on data alone), and uncertainty in the approximated function and result-
ing predictions can be rigorously quantified; when uncertainty is deemed unacceptably large, alternative
functional forms and/or additional data may be required. Such rigorous handling of uncertainty makes
statistical modelling a powerful inference approach.

The realistic quantitative modeller’s world view falls somewhere between 1) and 2) on the spectrum.
In the case of the free-fall experiment, even if lacking a physics training, the modeller would insist
on acquiring (from colleagues and/or literature reviews) a fundamental understanding of the response
variable (time) and covariate (height). Then, not only would it be clear that the square-transformation is
appropriate, but also that any linear regression should exclude an intercept. This way, the mechanistic
understanding of a resting object is already embedded in the statistical model, and thus typical dangers of
extrapolation into unobserved covariate ranges (Perrin, 1904) are mitigated.

Finally, the realistic modeller would ponder any limitations of simple linear regression as a tool to estimate
g from the free-fall data. Regression pertains to a statistical model. Here, the statistical model is

(observed time)2 = β×(observed height)+error, error is iid Gaussian(mean = 0, variance = σ2) (1)

where “iid” denotes “independent and identically distributed.” Thus, the model assumptions are i)
“(time)2 ∝ height” represents the true state of nature, ii) time recordings are observed independently,
the square of each has Gaussian noise, and iii) ignoring observation error in height, the Gaussian noise
has a constant unknown variance σ2.

Although it is common knowledge that i) is true, in a typical research scenario, how is the modeller to
determine whether the presumed functional form is the true state of nature? If it is not, what does the
error term represent, and how does that in turn affect the justification of assumptions ii) and iii)? After all,
“garbage in, garbage out”—if linear regression were deemed unfit-for-purpose, then none of a high R2,
tight confidence bands, a small error bar range, or a small p-value would indicate a reliably estimated g.

Below, we explore these philosophical questions asked by the realistic quantitative modeller. We dis-
cuss these in the context of cutting-edge statistical modelling frameworks to encompass mechanistic and
empirical modelling approaches; focus is on the Bayesian melding framework.

2 TYPES OF ERROR

“All models are wrong, but some are useful.”

To fully appreciate this famous and seemingly obvious statement by the late statistician George E.P. Box,
let us distinguish between the statistical (empirical) model (1) and its deterministic counterpart

(time)2 = β × (height). (2)

Effectively, the deterministic model (2) stipulates a presumed law of nature, without any reference to
data. In this context, the wrongness or error in (2) would lie in that it may not be a universally true state
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of nature. (In the age of quantum mechanics, long-standing “universal” laws according to Newtonian
physics indeed break down in the universe of subatomic particles.) This is model error.

Although (2) mentions no data, in practice the independent and dependent quantities in (2) are observ-
able or measurable, thus referred to as variables by statisticians. In contrast, β is a parameter that is not
directly observable but can be “solved for” from the deterministic model given observations on the vari-
ables. However, observations or data are inherently noisy, so that each pair of (height, time) observation
necessarily yields a unique “solution” for β (ignoring rounding). This leads to the empirical version of
(2), in the form of the equation in (1). Thus, the error term in (1) captures the randomness that violates
the equality in (2). This is observation error.

In light of the model error in (2), can the error term in (1) be regarded merely as observation error?
In practice, the answer is “no”: an error term in a typical statistical model is a catch-all quantity that
encompasses any deviation from the set of equalities that model the relationship among observed values.
For example, the error term in (1) is, in practice, regarded as the overall wrongness of “(observed time)2 =
β × (observed height)” due to a possibly incorrect functional form and/or noisy observations.

Many statistical models fall in this category, from the simple regression model (1) to complex stochastic
state-space models for nonlinear dynamical systems (e.g., McAllister et al., 1994; Parslow et al., 2013)
that are often regarded as data assimilation frameworks—typically in the form of Bayesian hierarchical
models—for rigorously integrating data and output from a deterministic model. However, the treatment in
practice of the error terms in such models as catch-all can be at odds with the intended quantitative rigour
that makes statistical inference a powerful tool. This is because inferential rigour relies on either that any
intrinsic model error is negligible or that the inference procedure is robust to non-negligible model error,
e.g., nonparametric methods which trade off statistical power for robustness. In most research scenarios,
assuming negligible model error is unrealistic, although robustness of the inference procedure can be
assessed analytically or through simulation studies.

To be or not to be Bayesian. Bayesian hierarchical models are multilevel models (Gelman and Hill,
2007) formulated under the Bayesian paradigm (Gelman et al., 2004)). A hierarchical model formulates
the relationship among variables and parameters as a hierarchy of conditional dependence. For example,
the two-level model

yi|wi,α ∼ p(yi|wi,α), wi|xi,β ∼ p(wi|xi,β), i = 1, . . . , n

expresses at Level 1 the probability distribution (generically denoted by p) of each data point yi condi-
tioned on the knowledge of some random but possibly latent (not directly observable) quantity wi and
parameter vector α, and at Level 2 the probability distribution of each wi conditioned on the knowledge
of covariate vector xi and parameter vector β.

Many natural phenomena that are intrinsically hierarchical in nature can be formulated as hierarchical
statistical models. Because statistical models can be formulated to formally integrate data and mech-
anistic understanding, hierarchical models are appealing stochastic counterparts of deterministic mod-
els to reflect complex processes. Hierarchical models need not be Bayesian, however, e.g., de Valpine
(2012) considers state-space models in the frequentist framework under which parameters are regarded
as nonrandom. For complex models, one advantage of the Bayesian approach is that plausible ranges of
unknown parameters can be expressed explicitly as a model component in the form of prior probability
distributions. For example, a modeller for (1) may specify the prior β−1 ∼ Gaussian(10, 1) to reflect
the a priori understanding (outside of the current experiment) that free falling objects near the surface of
the earth exhibit a typical acceleration of around 10 ms−2, give or take 1. In addition to observed data,
prior distributions contribute auxiliary information about the phenomenon at hand, thus they can improve
statistical power and hence, reduce estimation uncertainty. Priors can be specified at virtually any level of
informativeness, with tighter distributions being more informative. Another advantage is the flexibility in
a Bayesian model’s functional form and the types of probability distributions involved to accommodate
nonstandard estimation problems, e.g., those without closed-form solutions. This is in contrast to many
frequentist approaches that rely on closed-form asymptotic theory that only applies when the functional
form and data collection process satisfy the regularity conditions required for the theory to be valid. Note
that not requiring closed-form solutions typically implies computational burden (e.g., Murray, 2013).
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3 BAYESIAN MELDING: A DIFFERENT PERSPECTIVE OF ERROR

Deterministic models are also known as computer models, mathematical models, or simulation models.
Process models are such models formulated to reflect complex processes. Deterministic models typically
involve so-called input and output quantities. Output quantities are of main interest; they are solved for
given input quantities. In the case of (2), time and height are input quantities and β is the output quantity.

To understand bowhead whale population dynamics, Raftery et al. (1995) proposed the statistical mod-
elling framework Bayesian synthesis which was subsequently refined by Poole and Raftery (2000) into the
Bayesian melding framework. Their application involved a standard population dynamics model but no
explicit catch-all error term. Instead, the set of equations that constitute a deterministic model is kept in-
tact under Bayesian melding, and stochasticity is expressed hierarchically through prior distributions and
likelihood functions (probability distributions for data) associated with quantities in the equations. The
novelty of the approach is that each model parameter that would have been solved for in the context of de-
terministic modelling would be associated with an induced prior in addition to a pre-(deterministic-)model
prior. While Bayesian melding is an obvious overkill for modelling free fall, as a toy example, a Bayesian
melding formulation that corresponds to (2) is still nontrivial, comprising the four main components of

likelihood: ti|γ0, γ1, hi ∼ Gaussian(γ0 + γ1hi, 0.05
2),

hi are nonrandom covariate values,

deterministic model: β =M(γ0, γ1,h) where M(γ0, γ1,h) =
1

6

6∑
i=1

(γ0 + γ1hi)
2

hi
,

premodel priors: γ0, γ1 ∼ iid uniform(0, 0.5), β−1 ∼ Gaussian(10, 1),
induced prior: β ∼ p∗(β|M,γ,h)

where (hi, ti) denotes the height and time of the ith marble drop. The likelihood is based on assuming
a linear empirical relationship between height and time—as would be a reasonable specification by our
statistics Student A above—and a standard deviation of 0.05 s for time given height, which may be
deduced from the operations manual for the electronic sensor. The deterministic model M is what the
modeller wishes to incorporate with data (the likelihood). Thus, in the context of the modeller’s free-
fall experiment and likelihood, (time)2 would correspond to (γ0 + γ1 × (height))2; the summation in
M is to reconcile the theoretically constant value for β with the 6 different “solutions” for β from (2).
The premodel priors reflect a priori understanding (outside of the experiment and of M ) about the input
parameters γ0 and γ1 and output parameter β. Now, consider feeding h and ppremodel(γ0, γ1) through the
deterministic model M . This incurs or induces a probability distribution for β, which is p∗(β|M,γ,h).

Statistical inference is done in the Bayesian paradigm, such that likelihood and prior distributions are
integrated to form the joint posterior distribution for model parameters. Because two sets of prior dis-
tributions exist for output quantities, they must be melded to produce a single melded output prior. The
logarithmic pooling method with pooling weight α yields the melded output prior

pmelded(β) ∝ [p∗(β)]α[ppremodel(β)]
1−α, α ∈ [0, 1].

This allows the modeller to specify the tuning parameter α to reflect how much the statistical inference
should rely on M . For example, by fixing α=0, the deterministic model M would be ignored altogether
and standard Bayesian inference would proceed. At the other extreme, the modeller could discredit any
a priori understanding about β, thus letting M fully dictate the pre-inference behaviour of β.

Given pmelded(β), the model M in turn constrains the behaviour of γ. In principle, feeding pmelded(β)
through M−1 would lead to a joint melded input prior pmelded(γ), although M is obviously uninvertible.
Poole and Raftery (2000) proved that logarithmic pooling ensures regularity even for an uninvertible M .
In particular, pmelded(γ) is not explicitly involved in the Bayesian inference procedure, but inference is
instead based on the melded input posterior distribution

πmelded(γ) ∝ ppremodel(γ)

[
ppremodel(β =M(γ))

p∗(β =M(γ))

]1−α
as derived by Poole and Raftery (2000) for logarithmic pooling. Finally, feeding πmelded(γ) through M
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Figure 2. Inference for γ0, γ1, and β based on our Bayesian melding formulation of the free fall exper-
iment. Solid curves are melded posteriors (red: α=0.05; blue: α=0.5; black: α=0.995). Broken curves
denote priors (long dashes: premodel; short dashes: induced).

gives the melded output posterior πmelded(β). Fig. 2 presents the melded input and output posteriors.

As is the case for all modelling exercises, the same scientific problem may be formulated for Bayesian
melding differently through various combinations of output parameters, likelihood, and M . But the same
nuances are universal, even for our seemingly trivial toy example: to ensure that all four components of
Bayesian melding are sensibly defined (e.g., what constitutes an output as opposed to an input parameter)
and structured to contribute to statistical inference along an appropriate inference pathway. Here, our
formulation is such that β is the output parameter, and that the informational content of the data {h, t}
bubbles up to β through the input γ and the modelM , then the inference for β is fed back to the inference
of γ through M (in the opposite direction), thus completing the feedback loop of the inference pathway.

4 SOME SCIENTIFIC APPLICATIONS OF BAYESIAN MELDING

Since the seminal study by Poole and Raftery (2000) on whale population dynamics, several scientific
applications of Bayesian melding have appeared in the literature, all of which illustrate the appeal of
the approach for integrating data modelling with deterministic modelling. For example, Chiu and Gould
(2010) considered a simple mass balance model for nutrient transfer in a 36-compartment food web
ecosystem: φ = θ1 − θ2, where φ, θ1, and θ2 respectively denote the mean dissipation, mean influx,
and mean outflux, each being the average across all 36 compartments. The output parameter φ and input
parameters θ1 and θ2 each have a premodel prior and likelihood, the latter coming from data on dissi-
pation, influx, and outflux. Chiu (2012) presented a minimally technical summary of this work. Other
ecological applications of Bayesian melding have concerned forest systems (Radtke et al., 2002; Radtke
and Robinson, 2006). Applications for soil erosion mechanism (Falk et al., 2009) and disease transmis-
sion (Spear et al., 2002) also have emerged in the literature. Currently, the authors of this overview are
leading research that develops specialized models that employ Bayesian melding respectively in the en-
gineering sciences and economics. Other CSIRO scientists are currently pursuing Bayesian melding in
disease detection. Meanwhile, after the seminal methodological paper, Raftery continued to collaborate
on Bayesian melding applications in diverse disciplines including epidemiology (Alkema et al., 2007,
2008) and air quality control (Fuentes and Raftery, 2005).

5 CONCLUSION

Stochastic state-space modelling virtually has been the default data assimilation framework in quantitative
sciences, partly due to the well-established body of methodological and applied research associated with
it. For example, the widely used Kalman filter falls under this framework (Brockwell and Davis, 2006).
Nonetheless, since it first appeared in the literature in 2000, Bayesian melding has been an appealing
alternative that allows the modeller to take a perspective of model and data errors that is different from
what pertains to conventional statistical modelling frameworks.

Staying true to the philosophy of deterministic modelling, Bayesian melding regards a deterministic
modelM as the presumed law of nature. To reconcileM with data which necessarily violate the equalities
as stipulated by M , likelihood functions can be specified for those model parameters that are associated
with these data. A priori understanding of the model parameters can also be specified as premodel prior
distributions. These specifications are constrained through M which maps the input parameters to output
parameters, and conversely from output to input, even if M is uninvertible. The Bayesian melding frame-
work is flexible in that the modeller can tune the inference according to a preconceived level of reliability
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for the deterministic model relative to the a priori understanding of the unknown quantities of interest. In
principle, the tuning parameter α (logarithmic pooling weight) can even be estimated empirically if it is
made a model parameter under the Bayesian melding modelling framework.
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