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Abstract: This paper provides a simple correction to the measurement of soil volumetric heat capacity 
(and soil water content) using a dual probe heat pulse device with instantaneous heating, to allow for rods of 
finite radius and heat capacity. The correction is based on the spatial weighting function of Knight et al. 
(2007) and checked using the identical cylinders perfect conductor (ICPC) theory of Knight et al. (2012). 

The dual probe heat pulse (DPHP) method uses two parallel rods to estimate soil volumetric heat capacity 
and hence volumetric water content. Most of the heat capacity of wet soil is due to its water content, and so 
the water content has a known relation to the heat capacity. A known pulse of heat applied to the emitter rod 
causes the temperature at the receiver rod to rise and then fall. The time and the size of the maximum 
temperature rise at the receiver are measured. Assuming that the thermal properties of the soil are spatially 
uniform, that the heat pulse is applied instantaneously, and that the rods have zero diameter and zero thermal 
capacity, the standard solution of the forward problem gives a formula for the maximum temperature rise in 
terms of the thermal capacity of the soil and the known parameters of the problem. Campbell et al. (1991) 
inverted this to give a solution of the inverse problem as a simple explicit formula for the soil heat capacity in 
terms of the maximum temperature rise and the known probe parameters. 

Kluitenberg et al. (1993) and Bristow et al. (1994) introduced a calculation method that accounts for the 
finite probe heating duration, but requires the evaluation of the exponential integral function. Knight and 
Kluitenberg (2004) derived a simple power series approximation which converges well as long as the heating 
duration is not too big compared to the time to maximum temperature. This method is simple enough to be 
implemented on a small computer chip in a device. However it has been observed that the measurements are 
less accurate when the soil is dry, and this is likely to be due to the finite radius and finite heat capacity of the 
rods being neglected in the existing analysis. The semi-analytical solution of Knight et al. (2012) assumes 
that each rod is a perfect conductor, and that the presence of the receiver does not affect the temperature field 
near the emitter. They derived a solution of the forward problem in the Laplace transform domain and 
inverted it numerically, finding that the probe radius and heat capacity have a significant effect on the time 
and magnitude of the maximum temperature at the receiver, and hence on the accuracy of the method.  

The spatial weighting function theory of Knight et al. (2007) for probes of zero radius provides an 
approximate method of calculating the apparent measured heat capacity of the soil-probe system as a 
weighted average of the heat capacity of the rods and the heat capacity of the surrounding soil, with the 
weights calculated by numerical integration and dependent on the probe radii. The weights need only be 
calculated once for a given probe geometry. This formula can easily be inverted to give a simple correction 
procedure which gives the soil thermal capacity from the measured apparent thermal capacity of the probe-
soil mixture and the known probe heat capacity. As expected, a larger correction is necessary for dry soil than 
for wet soil, and the correction is zero when the soil and probe heat capacities happen to be the same. The 
procedure is simple enough to be implemented on a computer chip with limited memory and processing 
capacity. 

The accuracy of the procedure was checked by solving the forward problem of calculating the maximum 
temperature rise with known soil heat capacity and probe parameters using the semi-analytical solution of 
Knight et al. (2012). An iteration procedure was then used for the inverse problem to calculate the soil heat 
capacity given the measured temperature rise. The agreement with the approximate value given by the spatial 
weighting procedure is extremely good.  

It is relatively straightforward to extend the theory given here for instantaneous heating to the case of finite 
heating duration. 
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1. INTRODUCTION 

The dual-probe heat-pulse (DPHP) method of measuring soil volumetric heat capacity and hence water 
content was developed by Campbell et al. (1991). They used two parallel probes, each a long rod of radius a 
small compared to their spacing L. Figure 1 shows a DPHP device used by Heitman et al. (2003). Campbell 
et al. (1991) assumed that a heating pulse of Q J m-1 was applied instantaneously to the heating rod of zero 
radius and heat capacity, and that this caused the 
temperature to rise at the receiver rod, also of zero 
thickness and heat capacity. If ܥ௦ J m-3 K-1 and λ W 
m-1 K-1 are the heat capacity and thermal 
conductivity of the soil, with ߢ =  ௦ m2 s-1 theܥ/ߣ
thermal diffusivity, then the temperature rise at the 
receiver at time t is (Carslaw and Jaeger, 1959)  ܶ(ܮ, (ݐ = ݐߣߨ4ܳ expቆ−  (1)											ቇ.ݐߢଶ4ܮ
The temperature rise has a maximum Tm at time ݐ௠ = ௅మସ఑.			Campbell et al. (1991) inverted this to get 

a measured estimate Cm for Cs as  ܥ௠ = ଶܮߨ݁ܳ ௠ܶ 																				(2) 
which has the virtue of simplicity.  

In practice the heating is not instantaneous but is 
applied over a finite time interval, with 8 s being typical. Kluitenberg et al. (1993) and Bristow et al. (1994) 
introduced a calculation method that accounts for the finite probe heating duration, but requires the 
evaluation of the exponential integral function which is not routinely available on computers. Knight and 
Kluitenberg (2004) derived a simple power series approximation which converges well as long as the heating 
duration is not too large compared to the time to maximum temperature. This method is simple enough to be 
implemented in a spreadsheet, or on a small computer chip in a device. 

Even when the finite heating duration is taken into account, direct comparisons for materials of known 
thermal properties have found that the estimates of ܥ௦ are not as accurate as expected, especially when the 
soil is dry. The errors can be reduced to some extent by using a calibrated “apparent” spacing L instead of the 
real physical spacing. This is likely to be due to the finite radius and finite heat capacity of the rods being 
neglected in the existing analysis. There has been a tendency to make the probes thin to conform with the 
theory, but this means that they are more likely to bend in hard soils. An analysis which took into account 
probe thickness would encourage the design of more rigid probes. 

2. THE SEMI-ANALYTICAL SOLUTION 

To test the hypothesis that the finite radius and heat capacity of the probes are important, Knight et al. (2012) 
derived a semi-analytical solution for probes of finite radius and heat capacity. They assumed that each rod is 
a perfect conductor, and that the presence of the receiver does not affect the temperature field near the 
emitter. Under these assumptions they used a Bessel function addition theorem to derive a solution in the 
Laplace transform domain of the forward problem for the temperature of the receiver given the soil heat 
capacity Cs. If the temperature of the receiver as a function of time is ܸ(ݐ), then its Laplace transform as a 
function of the Laplace variable p is defined as ෠ܸ with ෠ܸ (݌) (݌) = න ௣௧ஶି݁(ݐ)ܸ

଴  (3)									.ݐ݀
Knight et al. (2012) found that the transform of the receiver temperature for instantaneous heating is ෠ܸ (݌) = ߣߨ2(ܮߤ)଴ܭܳ  (4)													ොଶݒ
with ܭ௡(ݖ) the modified Bessel function of the second kind of order n and argument z, ߤ = ඥ݌ ⁄ߢ , and the 
transfer function for each probe 

Figure 1. Configuration of a DPHP device.         .
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,݌)ොݒ ܽ, (ߚ = (ܽߤ)ଵܭሾܽߤ1 + ߚܽߤ) 2⁄  (5)											,		ሿ(ܽߤ)଴ܭ(
 with ߚ = ଴ܥ ⁄௦ܥ  the ratio of the probe heat capacity ܥ଴ and the soil heat capacity. When the probe radius a is 
very small the transfer function is close to unity and the Laplace transform of the temperature is ෠ܸ (݌) = ߣߨ2(ܮߤ)଴ܭܳ ,																							(6) 
corresponding to the temperature given by (1), as in Carslaw and Jaeger (1959). Knight et al. (2012) inverted 
(4) numerically using the Stehfest (1970) method to find the temperature rise in the time domain. They found 
that the probe radius and heat capacity have a significant effect on the time and magnitude of the maximum 
temperature at the receiver, and hence on the accuracy of the method. Figure 2 shows the time course of the 
temperature rise at the receiver for three different dimensionless probe radii α, ߙ = ܽ ⁄ܮ , of 0.01, 0.1 and 0.2, 
and the ratio of heat capacities of ߚ = 2, with soil thermal conductivity ߣ = 0.5 W m-1 K-1 and heat capacity ܥ௦ = 2 × 10଺ J m-3 K-1. The clear differences in the maximum temperature, and also in the time to the 
maximum, are evident for the different dimensionless probe radii. 

 

 

Figure 2. Temperature rise with time at the receiver probe, for the three dimensionless probe radii values α 
of 0.01, 0.1 and 0.2, and for  β = 2. 

3. THE  SPATIAL WEIGHTING FUNCTION 

Knight et al. (2007) derived the spatial weighting function which gives the relative weighting that the 
measurement method gives to values of the soil heat capacity ܥ௦ at various positions around the probes. For 
small variations around the probes we have that ܥ௠ = න න ,ܺ)௦ܥ ܻ)ܹ(ܺ, ܻ)	݀ܺ	ܻ݀ஶ

ିஶ
ஶ
ିஶ 						(7) 

with the normalized weighting function having the property that 
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න න ܹ(ܺ, ܻ)	݀ܺ	ܻ݀ஶ
ିஶ

ஶ
ିஶ = 1		.				(8) 

For the DPHP instrument with rods of zero thickness and instantaneous heating the normalized weighting 
function has the form as a function of dimensionless space variables X and Y, with ܺ = ܻ ,ܮ/ݔ =   ܮ/ݕ

 ܹ(ܺ, ܻ) = ߨ2 ቂቀ2ܴଶ − ଵଶቁܭ଴(2ܴଵܴଶ) + 2ܴଵܴଶ	ܭଵ(2ܴଵܴଶ)ቃ 	exp ቀ−2ܴଶ + ଵଶቁ									(9) 
 

The emitter is at position (-1/2, 0) and the receiver is at (1/2, 0). The distances ܴଵ and ܴଶ	are the 
dimensionless distances from (-1/2, 0) and (1/2, 0) respectively, and R is the dimensionless distance from the 

origin. Taking the limit as ܴ → ଵଶ , 	ܴଵ → 1, 	ܴଶ → 0			gives the values at the centres of the probes, ܹ൬±12 , 0൰ =  .		ߨ2
Figure 3 is a surface plot of the normalized weighting function (9) showing the positions of the two rods of 
zero thickness. 

 

 

Figure 3. Surface plot of (9) showing the positions of the two rods of zero thickness. 

 

For the case with the soil around the probes having a uniform heat capacity ܥ௦ and the probe material having 
an assumed uniform heat capacity ܥ଴ , the integral (8) takes the simple form ܥ௠ = ଴ݓ଴ܥ + ௦(1ܥ −  (10)				,	଴)ݓ
with the coefficient ݓ଴ being the integral of the normalized weighting function (9) over the crosssection of 
both probe areas, 
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(∝)଴ݓ = 2න න ܹ(ܺ, ܻ)	ܴଵ	݀߮	ܴ݀ଵଶగ
଴

∝
଴ 					(11) 

where ܴଵis the local distance from the probe rod axis and φ is the angle around the axis. For small 
dimensionless probe radius ∝ we can assume that the average value of W is close to its value at the probe 
centre, and so ݓ଴(∝)	~	4 ∝ଶ .								 (12) 
The integration (11) was done numerically for various values of ∝ and the ratio of 	ݓ଴(∝)/∝ଶ plotted in 
Figure 4. The ratio is 4 for zero probe thickness and is approximately 3.85 for a probe with ∝ = 0.1. 

4. CORRECTION FOR FINITE PROBE RADIUS 

The formula (10) can easily be rearranged to give an approximate solution to the inverse problem, 

 

௦ܥ = ௠ܥ − ଴1ݓ଴ܥ − ଴ݓ 				.		(13) 
For the case of instantaneous heating, the weight ݓ଴ needs to be calculated only once initially for a given 
probe configuration, and then (13) gives a simple correction to the apparent measured values of soil thermal 
capacity. The procedure can be applied retrospectively to measured values, as long as the probe parameters 
are known. 

5. CHECKING AGAINST ICPC CALCULATIONS 

For a typical probe configuration of Basinger et al. (2003) the predictions of (13) were checked against the 
semi-analytical solution of Knight et al. (2012), used in inverse mode. With ߙ = ଴ܥ ,0.1 = 2.84, numerical 
integration gave ݓ଴ = 3.85 ∝ଶ. A simple iteration procedure was then used for the inverse problem to 

 

Figure 4. Dependence of weight  ݓ଴ on radius of probe
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calculate the soil heat capacity given a measured temperature rise ௠ܶ with values from 0.5 to 2 K. Figure 5 
shows the results. Results are shown for the percentage corrections made with the semi-analytical model, and 
with (13) for the calculated value ݓ଴ = 3.85 ∝ଶ, and also with the assumed value ݓ଴ = 4 ∝ଶ corresponding 
to a thin rod. The results of the three correction methods are surprisingly close.  As expected, the greatest 
corrections are necessary when ௠ܶ is largest, corresponding to a dry soil with low thermal capacity. Using 
the calculated value of ݓ଴ gives a better correction than just using ݓ଴ = 4 ∝ଶ, but the difference is not great. 

 

 

  
Figure 5.  Percentage corrections for various estimates of soil heat capacity. The measured value with no 
correction is the horizontal line. The solid line is the correction calculated by the semi-analytical solution 
in inverse mode. The points (x) show the percentage correction from (13) with the calculated value ݓ଴ = 3.85 ∝ଶ, and the crosses (+) show the same expression (13) with the assumed value ݓ଴ = 4 ∝ଶ .  

6. DISCUSSION AND CONCLUSIONS 

A simple correction formula has been derived to correct measurements of soil heat capacity using the DPHP 
method with instantaneous heating for the finite radius and finite heat capacity of the probes. It is very much 
simpler than using the semi-analytical solution of Knight et al. (2012) in inverse mode to infer soil thermal 
capacity from measurements of maximum temperature rise, and the results are almost as good. 

It is relatively straightforward to extend the theory given here for instantaneous heating to the case of finite 
heating duration. 
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