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Abstract: Urban river floods are normally caused by consecutive days of extreme precipitation.  It is expected 
that climate change will have significant impact on extreme precipitation because the warming atmosphere will 
alter the precipitation pattern by changing the global/regional hydrological cycle.  The Intergovernmental Panel 
on Climate Change (IPCC) finds that there is a tendency for an increase in daily heavy precipitation events in 
many regions in the world, including some in which the mean precipitation is projected to decrease.  Currently, 
the General Circulation Model (GCM) is still the most reliable tool for generating the future climate change 
scenarios, but GCM is still facing with the problems in simulating daily precipitation at regional or local scales, 
particularly in extreme precipitation events simulation, due to its coarse spatial resolution and the current 
incomplete understanding of the climate system.  The poor performance in regional/local precipitation 
simulation makes it difficult of direct using GCM outputs in climate change impact on extreme precipitation 
change studies, because extreme precipitation event is most likely a localised phenomenon.   Recently, research 
efforts have been put into the downscaling the GCM to support localised impact assessment.  However, such 
downscaling models are either complex so computational demanding (dynamic downscaling) or require 
extensive of observed data (statistical downscaling).  That has leads to a limited availability of model results 
which in most cases are not sufficient to fulfil a localised impact assessment needs.    

Since the publication of IPCC AR4, many GCM daily simulation outputs have become publically available, 
which provide an opportunity to study the change impact on total precipitation amount at daily bases, either for 
one day or multiple days.  Given that the direct application of GCM simulation data in assessing climate change 
impact on extreme precipitation is yet to be examined, the important question is then how to make use of the 
daily GCM results in order to obtain local daily precipitation statistics and their changes in the future.  This is of 
major importance for the extreme precipitation properties since the upper tail of the precipitation distribution 
suffers most from the coarse resolution representation in the GCMs.  Thus the focus of this study was given to 
examine the climate change impact on the extreme precipitation by linking the GCM daily simulation results 
with the local extreme precipitation observations based on a statistical approach.  Due to the current incomplete 
understanding of the climate system, the GCM’s precipitation generation mechanism is associated with high 
uncertainties.  Pattern scaling has been proved to be an economic and efficient method to cope with such 
uncertainties in generating the range of future climate change scenarios from different GCMs.  Based on this 
method, together with a GCM-ensemble probabilistic prediction, we developed a future extreme events 
generation method that is capable of addressing the range of uncertainties that caused by different GCM 
precipitation generation mechanisms.  The method was applied to the study the climate change impact on the 
Brisbane River rainfall and flooding.  Since the historical flooding in Brisbane River were caused by multiple-
day (typically 4 – 7 consecutive day) extreme rainfall, the method was applied to analysis the 5-day maximum 
total rainfall for the 17 long term historical observation stations in the catchment.  The results reveal a reinforced 
trend toward more intense extreme precipitation events into the future under climate change.  The shortening of 
return periods for extreme precipitation events and greater intensity of such events has implications for planning 
and decision making of durable infrastructure along with emergency services planning, landuse regulation and 
building codes.  This relates not only to possible flood mitigation strategies such as the potential need for 
additional flood mitigating infrastructure but also for the current built environment. 
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1. INTRODUCTION 

Each year extreme rainfall events cause substantial flood damage, particularly in the highly urbanized regions.  
Climate change will have significant impact on extreme precipitation because the warming atmosphere will alter 
the precipitation pattern by change the global/regional hydrological cycle.  To make an effective flood 
prevention and mitigation planning, it is critical to have the support information about how the future extreme 
precipitation event changes might be under the climate change impact.  Currently, it is commonly agreed that 
General Circulation Model (GCM) is still the best tool in constructing climate change scenarios.  However, the 
relatively coarse resolutions of GCMs may suitable for simulation of phenomena that manifest at synoptic scales, 
whereas extreme precipitation is of mesoscale rather than of synoptic scale.  These have led to a great difficulty 
in applying the GCM simulation outputs directly in analysing the climate change impact on extreme 
precipitation event.  Climate change is associated with the uncertainties caused by various emission scenarios 
and the differences among GCMs in precipitation simulations, particularly in extreme precipitation simulation.  
Such uncertainties are one of the challenges facing with climate change impact assessment but is crucial 
information that needed for any effective and efficient adaptation planning.  A planning practice that based on 
single GCM output is generally considered insufficient, while scenarios from an ensemble of GCM results 
capable of illustrating the difference of future changes are recommended.  Instead of using GCM outputs 
directly, since early 1990s (Santer et al. 1990) an alternative method has been developed in constructing future 
climate change scenarios.  The method, known as pattern scaling, was originally envisaged as a temporary 
compromise to add a time component to an equilibrium experiment with a GCM, pending the availability of 
transient experiments, and also to permit the comparison of standardised spatial patterns from different GCMs.  
This technique has been proved to be useful for a comprehensive risk assessment of climate change when more 
and more GCM outputs have become publicly available (Mitchell 2003；Li et al. 2009).  Pattern scaling offers 
the possibility of representing the whole range of uncertainties involved in future climate change projections 
based on various combinations of emission scenarios and GCM outputs, which allows cross model sensitivity 
analyses and uncertainty examinations to be conducted easily (TGICA 2007).  Various versions of the technique 
have been widely used in mean temperature and precipitation change studies (Mitchell 2003; Rik Leemans, R. 
and Bas Eickhout, 2004; Ruosteenoja et al. 2007).  The objective of this study is to extend the pattern scaling 
method to analysis the climate change impact on multiple day extreme precipitation events, which in most cases 
are the major source for urban flooding such as the 1974 and 2011 floods in Brisbane, Australia.   

2. METHOD 
 

2.1 General Extreme Value (GEV) Distribution 

The intensity and frequency of extreme events are typically represented by their recurrence interval, or annual 
return intervals (ARI).  These are values that are exceeded, on average, once every specified number of years.  
Extreme value statistical theory dictates that under very general assumptions regarding the parent distribution, 
the values in its tail must obey well defined distribution functions (Leadbetter et al., 1983).  If extreme events 
are defined to be the maximum or minimum value encountered over a fixed period of time, for instance 
seasonally or annually, the GEV distribution function appropriately describes the distribution of such extreme 
values (Castillo, 1988). 

Long term daily time series data is normally required to construct an annual maximum (minimum) data set that 
can then be fitted statistically with a pre-determined distribution function, i.e., the GEV distribution in this study.  
The GEV distribution is a three parameter function.  A number of methods exist in estimating the GEV function 
parameters using distribution fitted to a sample of annual extremes. The method adopted in this study was 
Probability Weighted Moment (PWM) based estimators following Hosking et al. (1985).  Having fitted the 
GEV distribution to a sample of annual extremes, the T-year return (ARI) value XT can be estimated from the 
quantile function (inverse of the cumulated distribution function). 

2.2 Pattern Scaling Method 

Pattern scaling method is based on the assumption that,  

1. a simple climate model at global scale can accurately represent the global mean responses simulated by 
a GCM (Raper et al. 2001);  

2. a wide range of climatic variables simulated by a GCM are in linear relationships with the global 
annual mean temperature change of the same GCM; and  

3. such linear relationships are validate at different spatial and/or temporal scales (Mitchell 2003).  
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The method has several advantages: e.g., the noise caused by internal variability is reduced and the information 
provided by GCM outputs performed with various forcing scenarios is utilized effectively.  Clearly, in order to 
adequately assess the impact of climate change on extreme precipitation, the characteristics of GCM simulated 
precipitation and its relationship with global warming need to be evaluated.  The magnitude of changes in 
precipitation extremes simulated by GCMs was found to have a linear relationship with the strength of GHG 
emissions or in proportion with the global warming trend for Australia and South America by Alexander and 
Arblaster (2009) and Tebaldi et al (2006) respectively, which is in general agreement with the linear response 
assumption of pattern scaling method.   

For climate change impact assessment, results based on an ensemble model approach is preferred to a single 
GCM model outputs, as a single projection of future climate made with even the most sophisticated GCM can 
be of limited use for impact assessment.  As pointed out by Palmer and Räisänen (2002) that ensemble-based 
probabilistic predictions, as used in short- and medium-term forecasts of weather and climate, were more useful 
than deterministic forecasts using a 'best guess' scenario to address this sort of problem.  One example of the 
ensemble method application of this to extreme event analysis can be found from Kharin et al (2007). 

2.3 Extreme event scenario generation  

For each GCM grid (i,j), the PWM was used to estimate the GEV function parameters for the GCM simulated 
baseline and future periods.  For a target return period T, the difference of its future projected and the baseline, 
a.k.a observed extreme precipitation value XT is calculated as: 

)()()( ijTsyijTsyijT XXX −=Δ              
(1) 

where XT(ij) is the T ARI value of the GCM baseline for grid (i,j), which was derived from applying GEV 
function to GCM’s simulation period of 1960-2000; XT(syij) is the projected T value for future year y under the 
emission scenario s for the same grid.  It was calculated from applying GEV function to 20 or 30 years of GCM 
simulated data (depend on data availability) that takes the future year y as the central time point. 

Since the increased radiative forcing drives the global warming trend, the pattern scaling method may be 
described as: for a given XT, its anomaly ΔXT

* for a particular grid (i,j), and year (y) under an emission forcing 
scenario (s) can be derived as: 

'
)()(

*
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where ΔT(sy) being the annual global mean temperature change between year y and baseline, which is typically 
simulated by a simple global climate model such as MAGICC (Wigley and Raper, 2002); and ΔX’

T(ij) is the 
change rate of XT at grid (i,j) in response to annual global mean temperature change.  According to pattern 
scaling assumption, for a given GCM, ΔX’

T(ij) should be obtained from any one of its simulation runs.  However, 
such a consistent linear response is rarely found for a given available GCM data.  One possible reason would be 
that the current available simulation period of 20 year from any GCM may not be long enough for extracting 
ΔX’

T(ij) with sufficient statistical significance.  On the other hand, one could also argue that this may be because 
the change rate of XT is not liner to the annual global temperature change in nature.  Indeed, further research is 
required to look into the relationships between the change rate of various climate variables and the global mean 
temperature changes.  However, such a research requires extensive GCM experiments with purposely designed 
input and outputs requirements, which may not become reality in the near future.  Nevertheless, pattern-scaling 
does not seem to be a very large source of error in constructing regional climate projections for extreme 
scenarios (Ruosteenoja et al, 2007).  Assuming the validity of the pattern scaling method, for a given GCM it is 
possible to take all available GCM outputs in calculating ΔX’

T(ij) to reduce the effects of the GCM internal 
variability from different sampled emission scenarios and time periods.  In this study, a least squares regression 
as described by Mitchell (2003) and Ruosteenoja et al. (2007) was followed:  
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where n is the number of emission scenarios and m is the number of future simulation periods from a GCM.  In 
this study, for all GCMs used, results from three SRES scenarios (A1B, A2, and B1) and 2 sample periods 
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(2046-2065 and 2081-2100) were available, i.e n=3 and m=2.  For a given T ARI value, a spatial ΔX’
T was 

calculated by applying Equ. 3 to each GCM grid (i,j).  

After ΔX’
T(ij) was obtained for a given grid (i,j), ΔX*

T(syij) can be calculated from Equ. 2 with a given ΔT(sy) (the 
commonly used ones are IPCC SRES), and the future extreme event values for the grid can then be derived from: 

*
)()()(

~
syijTijTsyijT XXX Δ+=                (4) 

where )(

~
ijTX  is the observed T ARI value.  

In order to construct the GEV function for a future year y, ΔXT(syij) was calculated for 7 ARIs, i.e., T = (2, 5, 10, 
20, 50, 100) based on Eqa. 4.  The GEV function parameters for the future year y can then be obtained by fitting 
the 7 extreme values to GEV function using Levenberg-Marquardt algorithm (Press et al., 1997).  

Apart from the differences in emission scenarios, another major source of uncertainty for future climate 
projection is the different projections from different GCMs.  For the same region or a localised area represented 
by a GCM grid, the change pattern of extreme precipitation values can vary significantly among GCM 
simulations, representing a large inter-model uncertainty.  As a result, large ensembles of GCM predictions 
sampling the widest possible modelling range are needed for comprehending the range of uncertainties.  The 
quantified uncertainty range provides important information for identifying effective and efficient adaptation 
measures against potential negative climate change impact.  

Unban flooding is typically caused by multiple day extreme precipitation.  For example, the 1974 and 2011 
Brisbane floods were caused by 4 and 7 consecutive day heavy rainfalls respectively.  In this study, we analysed 
the climate change impact on 5 day rainfall for Brisbane River catchment.  A nonparametric adjusted bootstrap 
(BCa) method (Davison and Hinkley 1997) was adopted to estimate the 95% confidence interval for the baseline 
GEV.  The year 2100 was chosen for demonstration of the future extreme precipitation change.  Given the high 
uncertainties due to the large variation of the GCM outputs in projecting the precipitation change for the region, 
the median value from ensemble of all the 
available GCM model outputs was used as a 
represent of the ‘best guess’ of future change 
scenario.  

3. DATA 
  

The Brisbane River catchment forms in the 
Brisbane and Cooyar Ranges of the Great Divide 
within the coordinate of 26°39’S to 27°24’S and 
152°22’E to 153°09’E, with an area about 13400 
km2.  The Brisbane City straddles the river near its 
mouth (Figure 1). The catchment comprises six 
sub-catchments: the Stanley, Lockyer, Bremer, 
Upper Brisbane, Middle Brisbane and 
metropolitan sub-catchments.  A total of 17 
precipitation stations which have long term daily 
precipitation observation were selected for this 
study.  The observed daily station data was firstly 
aggregated for every 5 consecutive days to 
construct a 5 day total rainfall time series.  A daily 
time series data was obtained from the averaged of 
the 17 stations and used to build the baseline GEV 
distribution function for the catchment.  Table 1 
lists the name and location for the stations.  Each 
station has more than 60 years of observation, with 
Esk Post Office (40075) and Lowood Don Street 
(40120) have the longest of 124 years, and Mt 
Nebo Post Office (40147) the shortest of 64 years.  
The extreme precipitation event of January 2011 
was added to the observation, assuming it will be 

Figure 1: Brisbane River catchment and the location of 
the 17 rainfall stations (represented by Station ID) 
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the biggest event for the year. Also lists in Table 1 are the 100 ARI values of 5 day total extreme rainfall 
calculated from baseline GEV, as well as the total rainfall that caused 1974 and 2011 floods.    

In order to examine the climate change impact on annual daily maximum precipitation event, a time series 
precipitation data in daily time step is required from GCM simulations.  So far, there are 12 GCMs that have 
their daily simulation results available, which include the baseline period (1960-2000) and 2 future periods 
(2046-2065 and 2081-2100) under 3 SRES scenarios (A1B, A2 and B1).  All the 12 GCM outputs were firstly 
re-formatted to a unified 0.5°×0.5° grid using a bi-linear interpolation from their original resolution.  The 
change pattern ΔX’

T obtained at this resolution showed a great deal of noise between neighbouring grids, 
therefore a 3×3 grid smoothing process was introduced to reduce such a noise level. 

4. RESULT 

Figure 2 shows both the baseline GEV distribution and the 2100 GEV distribution projected by the median 
change value of the ensemble of the 5-day extreme precipitation for the catchment.  Also shown in Figure 2 is 
the 95% confidence levels for the baseline GEV distribution based on a 10000 bootstrap sampling of the 
observed values.  Compared to the baseline GEV, climate change makes extreme events at all level to become 
more intensified or more frequent in the future.  However, all the projected changes from the Low GCM 
projection (based on SRES B1 with low climate change sensitivity) is still inside the upper bound of the 95% 
confidence interval, whereas the projected changes based on High GCM projection (based on emission scenario 
SRES A1FI with high climate change sensitivity) is already beyond the upper bound of the interval.  The 
enlarged departures of the lines between observed and GCM projected GEV functions towards the upper tail of 
the distribution indicated an even stronger climate change effects when the precipitation event becomes more 
extreme.  The baseline intensity of the 100 ARI was 445 mm and changed to 508 mm and 584 mm under low 
and high GCM projection scenarios respectively, which represent a potential range of intensity increase between 
14 to 31%.  The frequency of the 100 ARI of baseline changed to 57 years and 37 years under the low and high 
GCM projection scenarios respectively, which are significant frequency increases between 43 to 63%.  We also 
calculated GEV for each station individually and derived their 100 ARI in comparison with the observed 
extreme rainfall that caused 1974 and 2011 floods and listed the results in Table 1.   

5. DISCUSSION AND CONCLUSIONS 

Extreme precipitation is a localized and complex phenomenon.  Given the size of Brisbane catchment, its floods 
might be actually caused by different rainfall regime.  In 1974 flood, most stations in the south observed a 
rainfall larger than 100 ARI value but were not recorded by stations in the north. Similar situation was again 
observed for 2011 flood but in a total opposite situation (Table 1). Though different, these extreme precipitation 

Table 1: The 100 year return value of 5 day total extreme precipitation derived from GEV distribution and 
observed total precipitation that caused 1974 and 2011 floods. The top 8 columns are stations in the North. 

Station Name ID Latitude Longitude 
Extreme precipitation (mm) 

100 ARI 1974 flood 2011 flood 
Yarraman Post Office 40258  -26.84 151.98 308 252 475
Lindfield 40247  -26.84 152.58 566 330 576
Peachester Woodford Rd 40169  -26.84 152.88 797 678 824
Blackbutt Post Office  40020  -26.88 152.10 362 352 439
Haden Post Office 41042  -27.22 151.88 258 208 269
Crows Nest 40382  -27.27 152.06 354 276 450
Esk Post Office 40075  -27.24 152.42 464 449 427
Somerset Dam 40189  -27.12 152.56 447 305 361
Mt Glorious Fahey Rd 40308  -27.33 152.77 995 1318 648
Mt Nebo Post Office  40147  -27.40 152.79 852 1118 519
Alderley 40224  -27.42 153.00 552 553 329
Amberley AMO  40004  -27.63 152.71 413 481 282
Gatton Allan Street 40083  -27.54 152.30 316 322 339
Harrisville Post Office  40094  -27.81 152.67 327 446 179
Lowood Don Street  40120  -27.46 152.57 420 391 550
Tarome 40198  -27.98 152.51 462 472 250
Moogerah Dam  40135  -28.03 152.55 473 437 285
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regimes can all lead to severe 
urban flood. At the catchment 
level, this research shows that 
the extreme precipitation event 
will shift to become more 
intensified and frequent due to 
climate change, particularly 
with the high change scenarios. 
However, the GEV distribution 
derived from the observed data 
shows a large 95% confidence 
level at the tail, hence the 
changes for those most extreme 
events may likely still inside the 
upper 95% bound of current 
GEV prediction.   
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Figure 2: The baseline and year 2100 projection of GEV distributions 
of annual maximum of 5-day extreme high precipitation for Brisbane 
Rive Catchment.  Low GCM projection was built on SRES B1 
scenario with low climate change sensitivity; High GCM projection 
was built on SRES A1FI scenario with high climate sensitivity. 
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