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Abstract: Improved streamflow forecasts a month or season ahead are essential for water resource 
management and planning. This paper explored the skills of forecasts for monthly and three-monthly total 
streamflows with a dynamic approach using a conceptual rainfall-runoff model SIMHYD for 31 catchments 
located in east Australia. For all the catchments, the SIMHYD was calibrated in a moving mode, i.e. using all 
the data prior to the forecast year. Retrospective forecasts of streamflow totals were generated from 1981 
onwards using the calibrated SIMHYD model together with three types of forcings: 

• The observed daily rainfall – this option uses observed (real) rainfall data, the prediction skill of the 
model reflects the performance of the model in the verification period with real forcings, i.e., the top 
limit of the skills of the model-based forecasting.  

• The daily rainfall data from all the years prior to the prediction year. For example, if there were 50 
years of data available before the prediction year, the model was run 50 times, each with the daily 
rainfall data from each of the previous 50 year. An ensemble of 50 forecasts of daily streamflow was 
generated.  

• The donwnscaled rainfall predictions from the Predictive Ocean Atmosphere Model for Australia 
(POAMA). An ensemble of 11 daily rainfall series for the prediction period from 1985 to 2006 were 
generated through downscaling POAMA forecasts (10 ensemble forecasts with the ensemble mean) 
using an analogue approach.  

The results show that the SIMHYD model was able to capture the rainfall-runoff relationships in majority of 
months/seasons of studied catchments, once it was properly calibrated. However, the model performance 
varied in different months/seasons of the year and across catchments. It was relatively poorer in drier period 
of the year, i.e, winter-spring time in the northern catchments and summer-autumn time in the southern 
catchments. The dynamic forecasting approach based on conceptual rainfall-runoff modelling provides a 
potential way to improve streamflow forecasting at monthly and seasonal lead time in east Australia. Using 
POAMA forecasts as forcing for the rainfall-runoff model improved the forecasting skills as compared to 
using forcing sampled from history for monthly streamflow forecasts, but not for three-monthly forecasts. 
Across all the study catchments, use of POAMA ensemble as forcing led to an increase in total number of 
months with NSE>0.0 by 14% (164 to 187 months with NSE>0.0), but a decrease by 9% (112 to 102 months 
with NSE>0.0) for three-monthly forecasts. Possible improvements in forecasting skills through further bias-
correction approaches are also discussed 
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1. INTRODUCTION 

Improved seasonal water forecasting through statistical, dynamical or hybrid methods is one of the main 
research areas identified in Australia’s water resources research. The statistical approach to seasonal 
streamflow forecasting has been explored decades ago (Chiew and McMahon, 2002; Maurer and 
Lettenmaier, 2003; Ruiz et al, 2007, Chowdhury and Sharma, 2009), and has been further progressed 
recently. A Bayesian joint probability (BJP) approach, which combines climate indices and antecedent flows 
to forecast streamflow a season ahead, has been developed and tested at multiple sites in Australia (Wang et 
al, 2009) and to select predictors (Robertson and Wang, 2009). It has been found to provide useful 
forecasting skills in southeast Australian catchments and has become operational at the Australian Bureau of 
Meteorology (BoM) since December 2010 for seasonal flow forecasting.  

The dynamical forecasting approach combines hydrologic modelling with forecast or re-sampled 
meteorological forcings, such as rainfall and potential evapotranspiration (PET), to forecast future 
streamflow. It is still in a pilot phase in Australia (Wang et al, 2011; Teng et al, 2011), although the approach 
has been explored since the early 1970s (Linsley et al, 1975) and is operationally used in the ensemble 
streamflow prediction (ESP) framework currently run by the National Weather Service (NWS) in the USA 
(Day, 1985; Wood et al, 2005). In ESP, a hydrologic model with ‘known’ catchment initial conditions is 
forced by an ensemble of forcing variables re-sampled from historical climate sequences or GCM predictions 
to generate probabilistic forecasts of future streamflow. As compared with historical ensemble inputs, Wood 
et al (2005) showed that unconditional (all years) GCM forecasts for regionally averaged variables did not 
improve streamflow forecasts in the USA. However, during strong ENSO years, forecasts may or may not 
benefit from using GCM forecasts, depending on regions where the ENSO tele-connection is strong or weak. 
In Australia, preliminary investigation of ESP approach with historical ensemble forcing in selected 
catchments in East Australia showed useful skills for monthly and three-monthly forecasts of streamflow 
totals, for the months and seasons following the wet season (Wang et al, 2011). Recently, efforts have been 
made to downscale, with bias-correction, the predictions of the Predictive Ocean Atmosphere Model for 
Australia (POAMA) (Shao et al, 2010), which enables the dynamic forecasting of streamflow with the 
forecast forcings (from POAMA), in addition to historical ensemble forcings. 

The objectives of this paper are to use data from 31 catchments in east Australia to quantify the skills of the 
rainfall-runoff model-based forecasts of streamflow at monthly and seasonal scales using both historical 
ensemble forcings and forcings derived from POAMA downscaling.  

2. DATA AND METHOD  

2.1. Study Catchments and data 

Thirty one unregulated catchments in east Australia 
(Fig 1) were selected for this study based on 
continuous data availability. Catchment details are 
summarized in Table 1. Daily streamflow data are 
obtained from relevant state government agencies 
(the Environment and Resource Management of 
Queensland Government for the Queensland stations, 
the NSW Water and Energy for the NSW gauges, 
and the Victorian Water Resources Data Warehouse), 
and have been checked for errors. Except the data 
from the three catchments in Queensland, all the 
other data are a sub-set of the catchment streamflow 
data as described in Vaze et al (2011).  

Daily time series of maximum temperature, 
minimum temperature, incoming solar radiation, 
actual vapor pressure and precipitation at 
0.05°×0.05°(~5km×5km) grid cells from the SILO 
Data Drill of the Queensland Department of Natural Resources and Water (www.nrw.gov.au/silo) (Jeffrey et 
al., 2001) are used. The SILO Data Drill provides surfaces of daily rainfall and other climate data 
interpolated from point measurements made by the Australian Bureau of Meteorology. Potential 
evapotranspiration (PET) are calculated by using the SILO data and the Priestley-Taylor model (Priestley and 
Taylor, 1972). Catchment averages of rainfall and PET were calculated and used for each catchment.   

Figure 1. Location of the thirty one catchments 
selected for this study 
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2.2. The SIMHYD model and its calibration 

The SIMHYD model was used in this study (Chiew et al. 2002). It is a simple conceptual rainfall-runoff 
model with one soil moisture store (S) and one groundwater store (G), and runs at a daily time-step. The 
SIMHYD model is one of the most commonly used rainfall-runoff models in Australia, and has been applied 
in numerous studies within Australia and internationally, including the estimation of runoff in the National 
Land and Water Resources Audit and climate change impacts on runoff (Chiew and McMahon, 2002). The 
version used here has 9 parameters, seven from the original version and other two for routing simulation 
(Zhang and Chiew, 2009).  

For all 31 study catchments, a progressive model calibration procedure was used to derive the parameters of 
the SIMHYD model. In the modelling process, assumptions were made that 1) at any given reference time, 
the future is unknown, and 2) model calibration can only be done using data collected before the reference 
time (because the future is unknown). To start, we set January 1, 1981 as the start time of model verification 
and forecasts for all the catchments. All the historical data before that date were used for model calibration, 
and the calibrated model was used to predict the streamflow in 1981. For each subsequent year, i.e., each 
year from 1982 to the last year of available data, the model was re-calibrated using all the data before the 
prediction/forecast year before it was used to predict/forecast streamflow in that year. This procedure ensures 
that for any given reference time, all the past data, but no future information, were used to calibrate the model. 

For each forecast year, SIMHYD model was run continuously from the first year of available streamflow 
data to 31 December of the year before the prediction/forecast year. The Rosenbrock optimisation method 
(Manley, 1978) was used to maximise the Nash-Sutcliffe Efficiency (NSE) (Nash and Sutcliffe, 1970) on 
daily observed and simulated flows in the calibration period: 
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where yt and yt
OBS are the simulated and observed daily streamflow, respectively. 

OBSy  is is the arithmetic 

mean of the observed streamflow. N is the sample size, i.e., total days or months. The Nash-Sutcliffe 
efficiency expresses the proportion of variance of the observed streamflow that is accounted for by the model 
and provides a direct measure of the ability of the model to reproduce the observed streamflow. NSE = 1.0 
indicates a perfect model being able to reproduce all the observed daily streamflows.  

2.3. Model verification and ensemble forecasts  

For each year (the prediction/forecast year) from 1981 onwards, the SIMHYD model was run with 
parameters derived using data from all previous years. Up to the 1st January of the prediction/forecast year, 
observed rainfall data were used to drive the model. In the prediction/forecast year, the following inputs were 
used to drive the model for verification and forecast modelling: 

• The observed daily rainfall – this option uses observed (real) rainfall data, the prediction skill of the 
model reflects the performance of the model in the verification period with real forcings, i.e., the top limit 
of the skills of the model-based forecasting. This option is denoted as ‘Verification’ 

• The daily rainfall data from all the years prior to the prediction year. For example, if there were 50 years 
of data available before the prediction year, the model was run 50 times, each with the daily rainfall data 
from each of the previous 50 year. An ensemble of 50 forecasts of daily streamflow was generated. This 
option is denoted as ‘ESP’. 

• The daily rainfall data generated using an analogue downscaling approach with POAMA forecasts – an 
ensemble of 11 daily rainfall series for the prediction period from 1985 to 2006 were generated through 
downscaling POAMA forecasts (10 ensemble forecasts with the ensemble mean). An analogue approach 
based on Timbal and Fernadez (2008), together with bias correction of POAMA climatology through a 
multivariate Box-Cox transformation (Shao and Li, 2010), was used for the downscaling of POAMA 
predictions. This option is denoted as ‘POAMA’  

The above prediction and forecasts were done year by year for the entire period from 1981 to 2006. Daily 
streamflows were summed up to monthly total flows and three-monthly total flows starting from each of the 
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12 months. The median of the ensemble forecasts using ESP and POAMA were calculated, and compared 
with the totals of the observed streamflows to evaluate the model performance and forecasting skills. 

Different skill measures were used in the literature (Potts et al., 1996; Wilks, 2006; Wang et al., 2009) to 
evaluate forecasts. For forecasts across multiple months, seasons and sites, we feel that a skill score by 
comparing the skill gain against a reference forecast is most meaningful, easy to interpret and convenient, 
thus the NSE (equation 1) is also used here to evaluate the forecasting skills. We used the climatological 
median of the flow totals in the targeted month or 3-month period as the reference forecast. In this case the 
NSE calculated is the same as the skill score proposed by Wilks (2006). NSE=0 implies that the model 
predictions are the same as the climatological median, while a NSE>0 indicates a forecast better than the 
climatological median. 

3. RESULTS 

3.1. Model calibration and verification skills 

The first NSE column on the left in Figs 2 show the performance of the SIMHYD model for simulation of 
monthly and 3-monthly streamflow totals in the calibration period. For monthly simulations, the model had 
some problems to simulate the 
streamflow in some months 
from May to November for the 
three catchments in Queensland 
(110003, 136202 and 145102) 
and in some months of the 
summer to autumn periods 
(December to April) for the 
seven catchments in the south, 
with many calibration NSEs less 
than zero. In general, the model 
performed relatively poorly in 
summer and autumn for 
catchments located south to 
latitudes of 35oS. For three-
monthly simulations, the model 
performance in calibration 
period was similar to that for 
monthly simulations, except 
poorer performance in the period 
from July to September in some 
southern catchments.  

In the verification period, for 
monthly simulations, the 
spatiotemporal pattern of the 
NSE was similar to that in the 
calibration period (Fig 2, second 
NSE column), except that the 
NSEs were generally lower. This 
was because the model 
parameters were not optimized 
in the verification period. For 
three-monthly simulations, the 
model performance in the 
verification period was generally 
better than for monthly 
simulations. This is largely due 
to the fact that the summation to 
three-monthly total flows 
reduced the variability of total 
flows, leading to better match 
between simulated and observed 
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Figure 2. NSE skills for simulation/forecasts of monthly and 3-monthly 
streamflow totals in the calibration, verification and forecasting periods 

at 31 catchments. The catchments are sorted in an ascending order of 
latitude (e.g. from north to south). Verification – real rainfall forcing, 

ESP –with historical ensemble forcing, POAMA – with POAMA forcing 
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flows.  

3.2. Skills of forecasts with historical ensemble forcing 

Fig 2 also shows the NSE skills of the monthly forecasts generated using historical ensemble forcing with the 
SIMHYD model. In general, the NSE of the monthly forecasts was significantly lower than the NSE of 
model verification, due to replacement of actual rainfall (forcing) with rainfall sampled from historical data. 
For monthly forecasts, useful skills of forecasts (NSE≥0.2) were only obtained for a majority of months at 
catchments south to the latitude of 35.4oS, except for catchments 410061, 410047, 222007, and 410062. For 
those catchments with higher forecasting skills, the NSE of the monthly forecasts was above zero for 6-12 
months of the year.  

For the three-monthly forecasts of streamflow totals, the NSE skills were generally lower than that of the 
monthly forecasts, but the spatiotemporal patterns of the NSE skills were similar (Fig 2, bottom). The lower 
forecasting skills were due to the reduced impact of initial catchment conditions on streamflow predictions 
with extended forecast lead time (from one to three months).  

3.3. Skills of forecasts with POAMA ensemble forcing 

Fig 2 the very right column further shows the NSE 
skills of the monthly and three-monthly forecasts 
generated using POAMA forecast ensemble with 
the SIMHYD model. Table 1 summarises the total 
number of months (across all the study catchments) 
when the NSE of the forecasts was greater than 
zero (i.e., a forecast better than the median total 
flow) for the monthly and three-monthly forecasts.  

For monthly forecasts, there was a general pattern 
of NSE skill increase when POAMA forecast 
ensemble (POAMA) was used as forcing instead of 
historical ensemble (ESP). Across all the study 
catchments, use of POAMA ensemble as forcing 
led to an increase in total number of months with 
NSE>0.0 by 14% (164 to 187 months with 
NSE>0.0) (Table 1). 

However, compared with ESP, for three-monthly 
forecasts, using POAMA ensemble led to worse forecasting skill (Fig 2). As a result, the total number of 
seasons with NSE>0.0 was reduced by 9% (112 to 102 months with NSE>0.0) (Table 1). 

4. DISCUSSION AND CONCLUSIONS 

In this paper, we explored the skills of forecasts for monthly and three-monthly total streamflows in east 
Australia with a dynamic approach using a conceptual rainfall-runoff model SIMHYD. The rainfall-runoff 
model simulates streamflow with the calibrated parameter values, the initial catchment condition (i.e., the 
status of soil moisture and groundwater stores S and G) and the concurrent rainfall and PET. The skills of 
forecasts depends on: 1) the accuracy of the rainfall-runoff model to capture the concurrent relationship 
between streamflow and the forcing, mainly rainfall, together with the simulated initial catchment condition, 
2) the representativeness of the model parameters in both calibration and prediction periods, and 3) the 
accuracy of the forcing variables, either sampled from history (ESP) or from POAMA forecasts, to represent 
future forcing. Accurate representation of the initial catchment condition and rainfall-runoff relationship 
requires appropriate conceptualisation and parameterisation of the model, while better estimation of the 
future forcing variables depends on the improvements of the climate forecasts or how to best sample the 
forcing variables from historical data. 

The generally high NSE in most part of the calibration and verification periods (Fig 2) show that the 
SIMHYD model was able to capture the rainfall-runoff relationships in majority of months/seasons of studied 
catchments, once it was properly calibrated. This is consistent with the findings of previous studies on 
SIMHYD performance (Chiew et al, 2002; Zhang and Chiew, 2009). However, results also show that the 
model performance varied in different months/seasons of the year and across catchments. The model 
performance was relatively poorer in drier period of the year, i.e, winter-spring time in the northern 

Table 1. Total number of months or seasons (3-
monthly periods) of the 31 catchments when 
NSE>0.0 for monthly or 3-monthly forecasts. The 
increase in number of months with NSE>0.0 due to 
using POAMA as compared to ESP forcings are 
also given. The numbers in the brackets indicate the 
percentage of the total months across 31 catchments 

 Monthly 3-Monthly 

ESP - Ensemble forcings 
from historical data 

164 

(44%) 

112 

(30%) 

POAMA - Ensemble 
POAMA forecasts as 
forcing 

187 

(50%) 

102 

(27%) 

Increase in number of 
months by using POAMA 14% -9% 
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catchments and summer-autumn time in the southern catchments. We tried to use alternative objective 
functions to increase the weight of low flows (e.g. NSE against log-transformed daily flows or combining 
NSE against real and log-transformed daily flows) and to put a volume constraint to ensure that the total 
modelled flows was within certain percent of the total observed flows (Chiew et al, 2008). The results 
showed that this had only slight impact on model performance as compared with using objective function to 
maximise NSE of daily simulated and observed flow. The deterioration of model performance in the 
verification period in some of the study catchments highlights the needs for further investigation of the model 
conceptualisation and the assumptions in model calibration in relation to stationarity of the rainfall-runoff 
relationship (Milly et al, 2008). In addition, a multi-model approach,  i.e., using results from more than one 
hydrologic model, will also enable comparison of model performance against observations and help to 
identify deficiencies in model conceptualisation and structure. Improved model performance can likely lead 
to improved forecasting skills, through more correct simulation of catchment initial conditions and rainfall-
runoff relationship, particularly in extreme wet or dry period (months and years). 

Use of POAMA forecasts as forcing improved forecasting skills significantly only for monthly forecasts, but 
not for three-monthly forecasts. This implies that the POAMA climate forecasts had skills with a lead time of 
one month, representing future forcings better than those re-sampled from historical data. However, the 
poorer skills for three-monthly forecasts seem to indicate that these skills diminish significantly when the 
forecast lead time increased to three months.  

In addition to those discussed above, a further important issue that has not been considered yet in this study is 
bias-correction or model updating. On one hand, the prediction bias can be reduced by improved model 
accuracy. On the other hand, prediction bias may also be minimised by post-processing, e.g., adopting bias-
correction procedures based on retrospective simulation error statistics (Shi et al, 2008). Through 
retrospective evaluation of forecast errors at eight streamflow forecast catchments in Western US for 
forecasts with either uncalibrated model but with a quantile mapping bias correction,  or a calibrated model 
without explicit bias correction, Shi et al. (2008) found that the reduction in forecast error achieved by bias 
correction alone was nearly as great as model calibration. This finding highlights the potential of skill 
improvement through bias correction and model updating, which will be further investigated in the next 
phase of our research. 

It can be concluded that the dynamic forecasting approach based on conceptual rainfall-runoff modelling 
provides a potential way for improved streamflow forecasting at monthly and three-monthly lead time in east 
Australia. Using POAMA forecasts as forcing for the rainfall-runoff model improved the forecasting skills 
only for monthly forecasts, not for three-monthly forecasts, as compared to using historical ensemble. It is 
expected the forecasting skills will be further improved through future bias-correction/model updating 
efforts.  
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