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Abstract: There have been numerous regionalization studies on runoff prediction in ungauged 
catchments. Most studies calibrate the rainfall-runoff (RR) models against gauged streamflow data and use 
regionalisation methods to specify parameter values to model runoff in the ungauged catchments. This study 
evaluates the relative benefits of different calibration (local and regional) and regionalisation methods 
(nearest neighbour and regional forest and non-forest parameters). The modelling experiments are carried out 
using two RR models (Sacramento and SIMHYD) and daily climate and streamflow data for 10 unregulated 
gauged catchments from southeast Australia.  

Three sets of model calibrations are carried out. In the first set, the rainfall-runoff models are calibrated to 
individual catchments. In the second set, spatial land cover information is used to calibrate two sets of 
rainfall-runoff model parameters (one set for forest and another for non-forest, a total of two calibrated 
parameter sets for all 10 catchments). In the third set, a cross-verification analysis is carried out where one 
catchment is dropped out in turn and the models are calibrated to the remaining nine catchments together 
using forest and non-forest land cover labels for individual grid cells within each catchment (one set for 
forest and another for non-forest, a total of two calibrated parameter sets for all nine catchments). The 
calibrated models ability to predict runoff in ‘ungauged’ catchments is then assessed by: (i) using parameter 
values from the geographically closest gauged catchment (nearest neighbour regionalisation); (ii) using forest 
and non-forest parameter sets calibrated to the remaining nine catchments (forest and non-forest 
regionalisation). 

The calibration results show that the median of Nash-Sutcliffe efficiency (NSE) for the 10 catchments for 
individual catchment calibration is slightly higher than that for the regional forest and non-forest calibration. 
This is to be expected as we are calibrating only two sets of parameter values in the latter case instead of 10 
sets. But the regionalisation results show that incorporating spatial land cover information in the gridded 
calibration of RR model improves runoff prediction in ungauged catchments with the median of 
regionalisation NSE for the forest and non-forest regionalisation significantly higher than that for the nearest 
neighbour method. 

The results and conclusions here are based on analysis undertaken using only 10 catchments and all these 
catchments are in close proximity with similar climate and physical characteristics. The results may be 
different when using catchments spread across a larger region. But the results here suggest that this approach 
can provide better estimates of runoff within a river basin and it has the potential to be used to estimate the 
impacts of land cover change. We are currently exploring the applicability and suitability of the approach 
over a larger region using data from 100 catchments in southeast Australia. 
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1. INTRODUCTION 

Reliable estimates of runoff are critical for undertaking water resources assessments to support river basin 
planning and management. In most of the large river basins, there are usually a small number of unregulated 
well-gauged catchments and most of the remaining catchments are usually poorly gauged or ungauged. For 
example, the Murray-Darling Basin (MDB) in Australia covers about 1 million km2 and the unregulated 
gauged catchments only cover about 9% of the MDB. In the last few decades, considerable research has been 
directed towards developing and implementing methods for predicting runoff in ungauged catchments. The 
International Association of Hydrological Sciences (IAHS) launched an initiative, the IAHS Decade on PUB 
(2003-2012) (Predictions in Ungauged Basins Initiative), focusing on “formulating and implementing 
appropriate science programmes to engage and energize the scientific community, in a coordinated manner, 
towards achieving major advances in the capacity to make reliable predictions in ungauged basins” 
(Sivapalan, et al., 2003). Regionalisation is typically used for water quantity studies in PUB, and is referred 
as the process of transferring optimised parameter values from a gauged catchment to the target ungauged 
catchment (Bloschl and Sivapalan, 1995).  

Three regionalisation approaches have been widely used to choose the donor gauged catchment whose 
optimised parameter values are used to model runoff for the target ungauged catchment: regression; spatial 
proximity; and physical similarity. The regression approach establishes a relationship between parameter 
values calibrated on gauged catchments and catchment descriptors or attributes (climatic and physical), and 
then the parameter values for the ungauged catchments are estimated from its attributes and the established 
relationship. The spatial proximity approach uses the calibrated parameter values from the geographically 
closest gauged catchment. The underlying supposition here is that neighbouring catchments should behave 
similarly owing to similar physical and climatic characteristics. The physical similarity approach transfers the 
entire set of parameter values from a physically similar catchment whose attributes (climatic and physical) 
are similar to those of the target ungauged catchment.  

The regression approach has been widely used in regionalisation studies (Young, 2006) but it has been 
strongly criticised by a number of researchers in the recent past (Bardossy, 2007; Oudin, et al., 2008). The 
main argument against the regression approach is that the cross-correlation between parameters are seldom 
taken into account and because model calibrations can produce vastly different sets of parameter values that 
give similar model performance i.e. the equifinality problem (Beven and Freer, 2001). The spatial proximity 
and physical similarity approaches have been more popular and used in several recent regionalisation studies 
(Bardossy, 2007; Merz and Bloschl, 2004; Oudin, et al., 2008b; Parajka, et al., 2005; Vaze and Teng, 2011). 
Merz and Bloshl (2004) and Parajka et al. (2005) compare the three regionalisation approaches in over 300 
Austrian catchments using an 11-parameter HBV model and show that the spatial proximity approach 
performs best followed by the physical similarity approach with the regression approach performing worst. 
Oudin et al. (2008) draw the same conclusion using two rainfall-runoff models, GR4J and TOPMO, in 913 
French catchments. In their study, they argue that as the spatial proximity approach does not systematically 
outperform the physical similarity approach, combining the two to select a donor catchment may improve the 
modelling results.  

Although the physical similarity approach transfers the calibrated parameter values from a gauged to an 
ungauged catchment based on similarity in physical and climatic conditions, it does not take into account the 
catchment physical properties such as land cover in the model calibration itself. The runoff from a catchment 
is mainly controlled by climatic conditions, but it is also strongly influenced by land use/land cover because 
of anthropogenic activities (Nandakumar and Mein, 1997; Vertessy, 1999; Vaze et al., 2004; Tuteja at al, 
2007; Elfert and Bormann, 2010). Zhang and Chiew (2008) used remotely sensed vegetation data in 
conceptual rainfall-runoff modelling and showed that this can improve runoff estimates in ungauged 
catchments. They undertook a lumped application of the conceptual model but modified the conceptual 
model structure to incorporate the catchment averaged impact of vegetation cover by changing the 
evapotranspiration algorithms.  

This paper investigates the use of land cover data at fine resolution in a gridded application of two conceptual 
rainfall-runoff models (Sacramento and SIMHYD) using data from 10 unregulated catchments in Victoria, 
Australia. The main focus of this paper is to incorporate the spatial variability of land cover across a 
catchment in the model calibration process to investigate whether the parameters derived using this approach 
can capture the varied catchment response under different land covers (forest and non-forest) and whether 
this provides better estimates of runoff when we transfer the calibrated parameters to ungauged catchments. 
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2. STUDY AREA AND DATA 

The ten study catchments are located in the winter –rainfall 
dominated region of Victoria, Australia and the catchment 
areas vary between 160 km2 and 1240 km2 (Figure 1). The 
catchments are largely unregulated with no major storages or 
irrigation schemes, as determined from knowledge of the 
drainage systems, advice from state water agencies and 
interpretation of spatial images. The forest cover in these 
catchments varies from ~5% to 100%.  

The climate data are derived from the SILO Data Drill 
(http://www.longpaddock.qld.gov.au/silo; Jeffrey et al. 2001) 
which provides surfaces of daily climate data for 0.05° grids (~ 
5 km x 5 km) across Australia, interpolated from point 
measurements made by the Australian Bureau of Meteorology.  

The streamflow data are collated as part of the Catchment 
Water Yield Estimation Tool (CWYET) project and have been 
checked for errors to be usable in large scale hydrological 
modelling (Vaze et al., 2011a). The main checks for errors 
include plotting time series and scatter plots of monthly 
rainfall and streamflow (and runoff coefficient) to identify 
inconsistency in the data and checking for recording errors 
(spikes in data, same data value for a long period, etc.).  

The catchment scale land use mapping for Australia which includes 16 land cover types was used to identify 
forest and non-forest grid cells in a catchment (Figure 1). The 16 land cover type data were produced by the 
Bureau of Rural Sciences in April 2009 at a 50m spatial resolution. The fine resolution dataset provides 
accurate estimates for land cover types for catchments with an area greater than 50 km2. 

3. METHOD 

3.1. Rainfall-runoff models 

Two conceptual daily rainfall-runoff models: Sacramento (Burnash et al. 1973) and SIMHYD (Chiew et al. 
2002) are used in this study. The model versions used here are very similar to those described in the above 
references. The models are typical of lumped conceptual rainfall-runoff models, with interconnected storages 
and algorithms that mimic the hydrological processes used to describe movement of water into and out of 
storages. Both the models have been widely used in Australia and the USA, including for regionalisation 
studies to predict runoff in ungauged catchments and for climate impact and land use change studies (Gan 
and Burges 2006; Zhang and Chiew 2008, Vaze et al. 2011b).  

3.2. Calibration and regionalisation strategies 

In model calibration, three separate sets of calibration experiments are undertaken:  

• Experiment 1: Calibrate all the catchments individually for each of the 10 catchments (one parameter set 
for each catchment: a total of 10 sets of calibrated parameter values);  

• Experiment 2: Calibrate all the 10 catchments together using forest and non-forest land cover labels for 
individual grid cells within each catchment (one calibrated parameter set for all forest grid cells and 
another for all non-forest grid cells in all the 10 catchment a total of two sets of calibrated parameter 
values);  

• Experiment 3: Drop one catchment out in turn and calibrate the remaining nine catchments together using 
forest and non-forest land cover labels for individual grid cells within each catchment (one calibrated 
parameter set for all forest grid cells and another for all non-forest grid cells in all nine catchments, total 
two sets of calibrated parameter sets).  

In the model calibration, the model parameters are optimised to maximise the NSE-bias objective function 
which is a weighted combination of daily Nash-Sutcliffe (Nash and Sutcliffe 1970) efficiency and a 
logarithmic function of bias and is given by 

OBJ = NSE – 5 | ln (1 + B) |2.5 
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Figure 1. Study area and location of the 
ten catchments. 
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Figure 2. Calibration NSE and bias for Sacramento and SIMHYD models for individual and regional 
(forest and non-forest) calibrations for the 10 catchments. 

where NSE is the Nash-Sutcliffe efficiency of daily streamflows and B is the bias (total modelled error 
divided by observed total streamflow) (Viney et al., 2009). The modelling at 0.05° grid cells allows a better 
representation of the spatial patterns and gradients in the rainfall and the spatial variability in the land cover 
compared to a lumped catchment modelling approach. The daily runoff for each catchment in the model 
calibration (and regionalisation) is obtained by aggregating the modelled daily runoff for all the 0.05o grid 
cells in the catchment. The Shuffled Complex Evolution global optimisation method (Duan et al. 1993) 
followed by a local optimisation method (Rosenbrock, 1960), with multiple starting parameter sets, are used 
to calibrate the models. 

The calibrated models ability to predict runoff in ‘ungauged’ catchments is then assessed by:  

• Using parameter values from the geographically closest gauged catchment (nearest neighbour 
regionalisation);  

• Using forest and non-forest parameter sets calibrated for the remaining nine catchments (forest and non-
forest regionalisation). 

4. RESULTS AND DISCUSSION 

4.1. Calibration 

The NSE and bias in model calibration for Sacramento and SIMHYD for individual catchment calibration 
(Experiment 1) and regional calibration with forest and non-forest parameter sets (Experiment 2) for the 10 
catchments is shown in Figure 2. The calibration NSE values for the 10 catchments in Experiment 1 for 
Sacramento vary between 0.58 and 0.94 with a median value of 0.85 (solid blue squares in Figure 2a). The 
SIMHYD individual catchment calibration NSE values are slightly lower than Sacramento and vary between 
0.46 and 0.90 with a median value of 0.80 (solid red squares in Figure 2a). In Experiment 1, both the models 
have very small calibration bias with the calibration bias varying between -0.03 and 0.01 for Sacramento and 
between -0.05 and 0.04 for SIMHYD (solid blue and red squares in Figure 2b). The calibration NSE values 
in Experiment 2 for Sacramento vary between 0.43 and 0.90 with a median value of 0.78 (hollow blue 
squares in Figure 2a) and the SIMHYD calibration NSE values are again slightly lower than Sacramento and 
vary between 0.43 and 0.85 with a median value of 0.74 (hollow red squares in Figure 2a). In Experiment 2, 
both the models have larger calibration biases as compared to Experiment 1 with the calibration bias varying 
between -0.22 and 0.23 for Sacramento and between -0.22 and 0.24 for SIMHYD (hollow blue and red 
squares in Figure 2b).  

The calibration NSE values in Experiment 2 are lower than the NSE values in Experiment 1 for 8 of the 10 
catchments for SIMHYD and all the 10 catchments for Sacramento (a reduction of 0.07 and 0.06 in the 
median NSE for Sacramento and SIMHYD respectively). This is because, in Experiment 1, each catchment is 
calibrated individually and so there are in total 10 calibrated parameters (one set for each catchment, total of 
10 parameter sets), whereas in Experiment 2, all the catchments are calibrated together with only two sets of 
parameters (one set for forest land cover grids and another for non-forest land cover grids, total of two 
parameter sets). The relatively small reduction in calibration NSE values in Experiment 2 compared to 
Experiment 1 (although only calibrating 2 parameter sets instead of 10 sets) may suggest that the calibrations 
in Experiment 2 are able to incorporate the spatial variability of land cover in the catchments in the calibrated 
parameter values. Another set of experiments were carried out to verify this where forest and non-forest 
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Figure 3. Regionalisation NSE and bias for Sacramento and SIMHYD models for individual and 
regional (forest and non-forest) simulations for the 10 catchments. 

labels were randomly assigned to each of the grid cells within the 10 catchments and the models were 
calibrated using two sets of parameters (forest and non-forest, two sets of calibrated parameter sets for the 10 
catchments). These results show a much larger reduction in calibration NSE values compared to Experiment 
2 (a reduction of 0.19 and 0.18 in the median NSE values for Sacramento and SIMHYD respectively). The 
results from this calibration with random forest and non-forest grid cell confirms that the regional 
calibrations in Experiment 2 which incorporate spatial land cover information are able to incorporate the land 
cover signal in model calibration.  

The model parameters in Experiment 2 are calibrated by incorporating spatial land cover information in the 
calibration process using data for all the 10 gauged catchments together. This has the potential to provide 
regional parameter sets for forest and non-forest land cover types (rather than catchment specific) which may 
provide better estimates of runoff in ungauged catchments. This is tested using a cross-verification (Vaze and 
Chiew, 2003) approach in Experiment 3 where one catchment is left out in turn and the remaining 9 
catchments are calibrated together using forest and non-forest land cover labels for individual grid cells 
within each catchment (one calibrated parameter set for all forest grid cells and another for all non-forest grid 
cells in all the nine catchment, total two sets of calibrated parameter sets). The calibrated forest and non-
forest parameter sets are used to simulate runoff for the catchment that was left out and the runoff is 
compared to the observed runoff for this catchment to determine the ability of the calibrated parameter sets to 
estimate runoff in ungauged catchments. These results are compared to the commonly used method where 
calibrated parameters from the geographically closest gauged catchment are used to simulate runoff for the 
ungauged catchments (nearest neighbour regionalisation method).  

The NSE and bias in regionalisation for Sacramento and SIMHYD for individual catchment calibration 
(using parameters from nearest catchment calibrated in Experiment 1) and regional calibration with forest 
and non-forest parameter sets (2 sets of forest and non-forest parameters in Experiment 3) for the 10 
catchments is shown in Figure 3. The regionalisation NSE values for the 10 catchments when using 
calibrated parameters from the geographically closest calibration catchment (from Experiment 1) vary 
between 0.10 and 0.82 with a median value of 0.58 for Sacramento (solid blue squares in Figure 3a) and 
between -0.09 and 0.79 with a median value of 0.55 for SIMHYD (solid red squares in Figure 3a). The 
regionalisation NSE values when using calibrated parameter sets for forest and non-forest land cover grids 
from Experiment 3 vary between 0.37 and 0.87 with a median value of 0.70 for Sacramento (hollow blue 
squares in Figure 3a) and between 0.35 and 0.84 with a median value of 0.67 for SIMHYD (hollow red 
squares in Figure 3a). In model regionalisation, both the models have a relatively larger bias for both the 
regionalisation methods as compared to bias in model calibration but the simulated runoff is always within 

40% of the observed runoff (hollow blue and red squares in Figure 3b).  

The results show that the regionalisation NSE values when using the regionally calibrated forest and non-
forest parameter sets are generally higher than the nearest neighbour regionalisation method. There is an 
improvement in regionalisation NSE for 7 of the 10 catchment for both the models when using the forest and 
non-forest parameter sets instead of calibrated parameter values from the geographically closest catchment 
and this improvement varies between 0.01 and 0.75 for Sacramento and 0.01 and 0.82 for SIMHYD. The 
bigger improvements are for catchments 1, 2 and 5 where the difference in forest cover between the target 
and donor catchment is large (36%, 36% and 32% respectively). There is a small reduction in regionalisation 
NSE for 3 of the 10 catchment for both the models when using the forest and non-forest parameter sets 
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instead of calibrated parameter values from the geographically closest catchment and this reduction varies 
between 0.03 and 0.05 for Sacramento and 0.03 and 0.07 for SIMHYD. The median regionalisation NSE 
when using regionally calibrated parameter sets is 0.12 higher than the median NSE for the nearest neighbour 
method for both the models. 

When comparing the NSE values in model calibration and regionalisation, there is a reduction of 0.17 and 
0.25 in the median NSE values for Sacramento and SIMHYD respectively in the individual catchment 
calibration in Experiment 1 and nearest neighbour regionalisation. There is a much smaller reduction in 
median NSE of 0.08 and 0.07 for Sacramento and SIMHYD respectively when comparing regional 
calibration in Experiment 2 and regionalisation using the forest and non-forest parameter sets calibrated in 
Experiment 3. The smaller reduction in regionalisation NSE values when using forest and non-forest 
parameter sets reiterate that the regional calibrations which incorporate spatial land cover information are 
able to incorporate spatial land cover signal in the calibrated parameter values. 

The results from this study suggest that incorporating spatial land cover data in model calibration with a 
gridded model structure provides better estimates of regional model parameter sets for forest and non-forest 
land cover. The incorporation of spatial land cover information in the regionally calibrated parameters 
provides improvements in estimates of daily runoff in ungauged catchments over the widely used nearest 
neighbour regionalisation approach and the regionally calibrated forest and non-forest parameter sets are 
better suited for predictions in ungauged catchments.    

5. SUMMARY 

This study evaluates the relative benefits of two calibration (local and regional) and regionalisation methods 
(nearest neighbour and regional forest and non-forest parameters). The modelling experiments are carried out 
using two rainfall-runoff models (Sacramento and SIMHYD) and daily climate and streamflow data for 10 
unregulated gauged catchments from southeast Australia.  

Three sets of model calibrations are carried out. In the first set, the rainfall-runoff models are calibrated to 
individual catchments. In the second set, spatial land cover information is used to calibrate two sets of 
rainfall-runoff model parameters (one set for forest and another for non-forest). In the third set, a cross-
verification analysis is carried out where one catchment is dropped out in turn and the models are calibrated 
for the remaining nine catchments together using forest and non-forest land cover labels for individual grid 
cells within each catchment. The calibrated models ability to predict runoff in ‘ungauged’ catchments is then 
assessed by: (i) using parameter values from the geographically closest gauged catchment (nearest neighbour 
regionalisation); (ii) using forest and non-forest parameter sets calibrated for the remaining nine catchments 
(forest and non-forest regionalisation). 

The calibration results show that the median of Nash-Sutcliffe efficiency (NSE) for the 10 catchments for 
individual catchment calibration is slightly higher than that for the regional forest and non-forest calibration. 
This is to be expected as we are calibrating only two sets of parameter values in the latter case instead of 10 
sets. But the regionalisation results show that incorporating spatial land cover information in the gridded 
calibration of RR model improves runoff prediction in ungauged catchments with the median of 
regionalisation NSE for the forest and non-forest regionalisation significantly higher than that for the nearest 
neighbour method.  

The results and conclusions here are based on analysis undertaken using only 10 catchments and all these 
catchments are in close proximity with similar climate and physical characteristics. The results may be 
different when using catchments spread across a larger region. But the results here suggest that this approach 
can provide better estimates of runoff within a river basin and it has the potential to be used to estimate the 
impacts of land cover change. We are currently exploring the applicability and suitability of the approach 
over a larger region using data from 100 catchments in southeast Australia. 
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