
Regionalising low-flow responses in large tropical 
catchments: a comparison of rainfall-runoff modelling 

and regression approaches 

C. Petherama, P. Rustomjia, B. Nealb, and A. Woodmanb 

a CSIRO Land and Water 
b Sinclair Knight Merz 

Email: cuan.petheram@csiro.au 

Abstract: A prolonged drought across southern Australia has led to renewed interest in water resource 
development of northern Australia (NA), with an increase in demand for runoff predictions from ungauged 
catchments in Australia’s tropics. However, wet-dry tropical environments have an extended dry season 
with periods of low or no flow, and from an ecological perspective, dry-season flows are of vital 
importance (e.g. Erskine et al., 2003).  The dry-season is also the period when potential consumptive water 
use is likely to be high.  Thus it is important to ensure dry-season flows are well predicted.  

One of the key challenges in undertaking robust water resource assessments across NA is the relatively low 
density of hydrological data. Using data from 105 catchments in tropical Australia, five daily rainfall-runoff 
models (RRM) and three methods of regionalising model parameters were compared for the simulation of 
dry-season flows. To ensure low-flows were well modelled the approach of Petheram et al. (2012) was 
adopted, where the simulated and observed terms in the objective function were raised to the power of λ. 
Here six calibration runs were undertaken for each model, using values of 1.25, 1, 0.75, 0.5, 0.25 and 0.05 
for λ. To select the ‘best all-round’ parameter set we used the method of Petheram et al. (2012), where for 
each model and for each catchment the ‘best all-round’ calibrated parameter set was selected based on the 
weighted combination of different Nash-Sutcliffe Efficiency metrics. We then compared the best 
performing RRM and best method of regionalisation against regression-based predictive methods for a wet-
dry tropical environment. 

We found that the adoption of multiple criteria to select an optimal parameter set resulted in an improved 
ability to simulate low flows with no loss in predictive capacity for high flows. An educated transposition of 
parameter sets from gauged to ungauged catchments was found to be better than random assignment of 
model parameters, whilst assigning model parameters on the basis of spatial proximity outperformed 
physical similarity methods. For simulating the lower-half of the flow duration curve no clear method was 
best for regionalising model parameters and no method was better than randomly assigning intact model 
parameter sets. The best performing multi-model ensemble (Sacramento and IhacresClassic) and the best 
method of parameter regionalisation (spatial proximity) performed similarly to statistical regression 
approaches in predicting mean annual flows. However, the regression approaches demonstrated more skill 
predicting low-flow metrics. There may be opportunities to improve low-flow NSE metrics under 
calibration mode through ‘smarter’ calibration procedures. However, it is thought unlikely that this will 
result in improved performance under prediction mode.  
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1. INTRODUCTION 

A prolonged drought across southern Australia has led to renewed interest in water resource development of 
northern Australia (NA), with an increase in demand for runoff predictions from ungauged catchments in 
Australia’s tropics. However, wet-dry tropical environments have an extended dry season with periods of 
low or no flow, and from an ecological perspective, dry-season flows are of vital importance (e.g. Erskine 
et al., 2003).  The dry-season is also the period when potential consumptive water use is likely to be high.  
Thus it is important to ensure dry-season flows are well predicted. 

Using data from 105 catchments in tropical Australia, five daily rainfall-runoff models (RRM) and three 
methods of regionalising model parameters were compared for the simulation of dry-season flows. 
However, it is well recognised that conceptual RRM do not simulate low-flows as well as mid-to-high 
flows (e.g. Chiew 2010). In a study of 21 catchments in south-western Norway, Engeland and Hisdal (2009) 
found regression methods gave better low flow estimates than the HBV semi-distributed conceptual RRM. 
Here we compare the best performing RRM and method of regionalisation against regression based 
predictive methods for a wet-dry tropical environment. 

1.1. Study area 

The study region includes Australia’s Timor Sea, Gulf of Carpentaria and the most northern section of the 
North-East Coast Drainage Divisions (Figure 1) – covering an area of over 1.25 million km2. Mean annual 
rainfall varies across the study area by more than an order of magnitude, from about 400 mm yr-1 south of 
the Gulf of Carpentaria, to over 4000 mm yr-1 on the steep coastal escarpments in the North-East Coast 
Drainage Division. More than 90 percent of rain falls between November and March as the inter-tropical 
convergence zone extends south and passes over the northern extent of the continent. Inter-annual 
variability of mean annual rainfall and streamflow are higher than in other parts of the world of the same 
climate type (Petheram et al., 2008). Baseflow indices and a lag-one correlation coefficient of annual 
streamflow are very low (Petheram et al., 2008), and together with the generally steep shape of flow 
exceedance curves, suggest that most of NA has limited hydrologic storage capacity. Exceptions are the 
rivers set in the Early to Middle Palaeozoic carbonate rocks in the Northern Territory and western 
Queensland, Cretaceous sandstones in the Northern Territory and Quaternary sands of northern Cape York 
which exhibit perennial flow (Petheram and Bristow 2008). 

 

Figure 1 Northern Australia and location of gauging stations used in rainfall-runoff and regression 
analysis. Inset: Green and brown shading indicate Timor Sea and Gulf of Carpentaria Drainage 

Divisions respectively. 
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2. METHOD 

2.1. Rainfall-runoff model calibration 

A database of 105 streamflow gauging stations was compiled (Figure 1). Stations were required to have at 
least 10 years data and 4 years of wet season data. Sixty percent of catchments had an area greater than 
1000 km2 and 15 percent of catchments had an area greater than 10,000 km2. 

Five lumped conceptual daily RRMs were trialled to determine the model or model-combination that best 
modelled low-flow runoff across NA. In order of decreasing complexity, these models were Sacramento 
(Burnash et al., 1973), SMARG (Goswami et al., 2002), IHACRES Classic (Croke 2006), SIMHYD 
(Chiew et al., 2002) and AWBM (Boughton 2004). The rainfall-runoff modelling utilised gridded daily 
rainfall and Areal Potential Evapotranspiration (APET) data at 0.05 degree resolution (approximately 5 x 5 
km), generated from the gridded Silo climate data (www.nrm.qld.gov.au/silo). 

Each RRM was calibrated against observed streamflow data from unimpaired catchments with the same 
parameter values used for all grid cells within a catchment, with a one year warm-up period. Calibration 
was carried out by minimising the sum of square errors between the simulated and observed values of daily 
streamflow. To ensure low-flows were well modelled the approach of Petheram et al. (2012) was adopted, 
where the simulated and observed terms in the objective function were raised to the power of λ. Here six 
calibration runs were undertaken for each model, using values of 1.25, 1, 0.75, 0.5, 0.25 and 0.05 for λ. 
Values of λ less than 1 generally reduce the relative influence of high-flows in the objective function. The 
large number of catchments meant that an automated calibration procedure was required. Calibration was 
automated using two methods applied sequentially: 1) shuffled complex evolution (Duan et al., 1993); and 
2) the Rosenbrock method (Rosenbrock, 1960). A log-bias constraint (Viney et al., 2009) was employed to 
ensure that the total flow volumes were well modelled. Model performance was assessed in terms of Nash-
Sutcliffe Efficiency (NSE) and model bias. 

To select the ‘best all-round’ parameter set we used the method of Petheram et al. (2012), where for each 
model and for each catchment the ‘best all-round’ calibrated parameter set (denoted by Ω) was selected 
from the six calibrated sets based upon the highest NSEW value as computed by Equation 1. 
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In Equation 1 the subscripts D, Ddry, Dfdc, M, Mdry, Mfdc and LHfdc correspond to daily flow, daily dry 
season flow, daily flow- duration- curve, monthly flow, monthly dry season flow, monthly flow- duration- 
curve and lower-half of the daily flow- duration- curve (i.e. compares observed and predicted between the 
50 and 100 percentiles of daily flow). In this manuscript the term ‘calibration mode’ refers to the simulation 
of streamflow in a catchment using a locally derived parameter set. The term ‘prediction mode’ refers to the 
simulation of streamflow in a catchment using a parameter set donated from another catchment. 
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Figure 2 Summary of calibration (top cluster of lines) and prediction (bottom cluster of lines; spatial 
proximity method) for 2 low-flow NSE measures. From Petheram et al. (2012) 

2.2 Comparing models and methods 

To compare model performance in both calibration and prediction modes across each of the different NSE 
measures, a single metric was devised to summarise the overall performance of a model or method for all 
105 catchments. This metric, denoted by NSE-A75, was computed as the average NSE of the best 75 percent 
of catchment models, where catchments with NSE values of less than zero were assigned a NSE of zero.  
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Three methods of regionalising ‘intact’ model parameter sets were examined; spatial proximity, catchment 
similarity and random assignment. Catchment similarity method assigned donor-target catchment pairs on 
the basis of 1) the summed ranking of 6 catchment and climate attributes (drainage density, elevation, slope, 
mean annual rainfall (MAR), mean dry season rainfall (dry), 20th percentile (P20) daily rainfall); or 2) the 
ranking of individual catchment and climate attributes. 

The spatial proximity and physical similarity regionalisation approaches of assigning donor–target pairs 
were compared to the 2.5th and 97.5th percentile values from 500 randomly selected donor –target pairs. 
All three methods of assigning donor-target pairs transposed whole parameter sets. 

2.3 Regression analysis 

A multiple linear regression analysis for prediction of hydrological metrics in NA was undertaken by SKM 
(2009) using a similar selection of gauging stations to those used in this analysis. SKM (2009) imposed the 
criteria that gauging stations had more than 90 percent of their record complete between 1972 and 1987. 
Hydrologic metrics were derived from these observed data between 1972 and 1987 and these were 
regressed against 34 physiological and seven climate attributes. The hydrological metrics investigated were: 

• mean annual, wet season and dry season flow 

• coefficient of variation of annual flow  

• 10th percentile daily flow 

• 20th percentile daily flow  

• 50th percentile daily flow  

• 80th percentile daily flow  

• percentage of time a gauge was at cease-to-flow level 

• baseflow index (BFI). 

A comparison of the rainfall-runoff modelling and regression approaches was undertaken using 49 gauging 
stations that were common to both approaches.  For the rainfall runoff modelling, the optimal model 
combination using both locally calibrated parameters and a parameter set transposed from a donor 
catchment (by the best regionalisation method) was used to generate a modelled daily streamflow timeseries 
from which the above metrics were computed. These RRM based metrics were then compared to those 
computed directly from the historic streamflow data (between 1972 and 1987) and also to those computed 
using the regression model. 

Two additional pairs of calibration and cross-verification RRM simulations were undertaken. Each pair 
varied slightly from the original run (see Table 1). These additional simulations were undertaken to further 
investigate and illustrate the effect of: 1) modifying the objective function and selecting the best ‘all-round’ 
calibrated parameter set (Ω); and 2) simulating runoff using parameters only from those catchments that 
were common to both the rainfall-runoff modelling and multiple linear regression dataset; on the prediction 
of specific hydrologic metrics. 

Table 1 Rainfall-runoff simulations for comparison with multiple linear regression results 

Model configuration Power transform No. catchments used in 
cross-verification 

A1 λ = Ω 105 

B λ = 1 105 

C2 λ = Ω 49 

1. Original run and anticipated best case. 

2. Rainfall-runoff simulations were only undertaken using parameters from those catchments that were common to both the rainfall-
runoff modelling dataset and the SKM (2009) multiple linear regression dataset. 

3. RESULTS 

3.1. Best method of RRM regionalisation 

A comparison of the methods of regionalisation for the five RRMs and the IhacresClassic - Sacramento 
ensemble is presented in Figure 3. Calibration values are included for context (cross-hair symbol). The 
range of NSE-A75 values which captures 95 percent of randomly selected target-donor catchment 
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combinations is illustrated by the grey bar.  What we would expect is that an educated selection of donor – 
target catchment pairs would result in higher NSE values than the randomised approach. The method of 
regionalising RRM parameters was insensitive to the exact RRM chosen. For daily dry-season flow the 
spatial proximity method consistently outperformed the physical similarity approaches. The second best 
method involved using physical similarity based on all landscape and climate attributes. For simulating the 
lower-half of the flow duration curve (FDC) there was no consistently best method for transposing model 
parameters, nor was there a method that was significantly different to randomly assigning donor-target 
catchments for all model types (p < 0.05). More detailed results are provided in Petheram et al. (2012). 
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Figure 3  Comparison of regionalisation methods for five models and the IhacresClassic-Sacramento model 
ensemble. Calibration results shown by cross-hair. Grey box illustrates the 95 percent range (i.e. 2.5 to 97.5 
percentile values) of NSE–A75 values of 500 randomly selected intact parameter sets. From Petheram et al. 
(2012) 

3.2. Comparison with regression analysis 

The best performing multi-model ensemble (Sacramento and IhacresClassic) and the best method of 
parameter regionalisation (spatial proximity) were used in comparison with the statistical regression 
approaches. The results are presented in Table 2. It can be seen from this table that the best performing 
multi-model ensemble (Sacramento and IhacresClassic) and the best method of parameter regionalisation 
(spatial proximity) performed similarly to statistical regression approaches in predicting mean annual flows. 
However, the regression approaches demonstrated more skill predicting low-flow metrics. 

Table 2 Comparison of NSE for rainfall-runoff modeling and regression analysis 

Hydrological 
indicator 

Calibration modelled vs observed 
(NSE) 

Prediction modelled vs observed 
(NSE) 

Regression modelled vs 
observed (NSE) 

Model configuration A B C A B C  

Mean annual flow 0.98 0.98 0.98 0.79 0.77 0.75 0.77 

Mean dry season 
flow 

0.96 0.73 0.96 0.41 0.36 0.59 0.74 

50th percentile daily 
flow 

0.96 0.62 0.96 0.16 0.09 0.48 0.31 

80th percentile daily 
flow 

0.84 0.36 0.84 -0.06 -0.24 0.09 0.41 

Cease-to-flow 0.40 -0.68 0.40 -0.21 -1.03 -0.21 0.58 

Base flow index 0.73 0.51 0.73 0.34 0.11 0.30 0.66 

 

4. DISCUSSION 

The use of RRMs to simulate low flows in the tropical environment of NA appears problematic. Although 
the models were in part calibrated and then selected on the basis of their ability to simulate low flows, the 
form of Equation 1 is such that there was still a slight bias towards medium and high flows. Had the 
objective function been of the same form as the low-flow NSE equations used in this analysis, then the low-
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flow NSE measures would have undoubtedly been higher under calibration mode. However, it cannot be 
taken for granted that this would result in improved NSE results under prediction mode. For example, the 
difference in NSEFDClh–A75 and NSEDdry–A75 under calibration and prediction modes was much greater 
(0.33 and 0.48 respectively) than the difference in medium and high flow NSE measures under calibration 
and prediction modes (e.g. 0.17 for NSED and 0.08 for NSEFDC). Furthermore Table 2 shows that for the 
Sacramento and IhacresClassic ensemble, the NSE of mean annual flow and NSE mean dry season flow 
were similar under calibration mode (0.98 cf 0.96 respectively). However, under prediction mode (using 
spatial proximity method) the RRMs were able to simulate mean annual flow (0.79) much better than they 
were able to simulate mean dry season flow (0.41). A large difference in NSE-A75 under calibration and 
prediction modes was also observed for the other low-flow related hydrologic indices, namely 50th and 
80th percentile of daily flow, cease-to-flow and BFI (Table 2).  

There is no one reason why simulating low flow processes under prediction mode should be worse than 
under calibration mode (as judged under NSEFDClh and NSEDdry ). It is likely that the spatial proximity and 
physical similarity methods used here for regionalising model parameters do not adequately capture the 
spatial variability inherent in those processes in the landscape that represent storage and flow attenuation. In 
the case of the physical similarity method, it is also likely that inappropriate ‘lumped’ landscape attributes 
are being used to judge similarity in low flow hydrology. It may be that we cannot measure, map or capture 
in a single term the controlling landscape attributes necessary to represent low flow hydrology. It is also 
highly likely that lumped, conceptual RRMs may have in-built structural limitations that cannot easily be 
overcome when it comes to simulating low flows.  

Although both the rainfall-runoff modelling and regression methods were assessed over the same time 
period and only using stations common to both approaches, different sets of stations were used to derive the 
regression equations and transpose RRM parameters. When only those stations common to both approaches 
were used to transpose RRM parameters (49 as opposed to the original 105 catchments), there was a slight 
increase to the low flow NSE measures (model configurations A and C in Table 2), indicating that the low 
flow results are less sensitive to station density than having a similar calibration and assessment time 
period. Conversely, the high flow NSE metrics under prediction mode were observed to decline slightly 
when using only those stations common to both the approaches, indicating that station density may be 
slightly more important than having a similar calibration and assessment time period. Nevertheless the 
difference between using the subset of 49 stations was slight, indicating the conclusions are relatively 
robust.  

5. CONCLUSION 

• The adoption of multiple-criteria to select an optimal parameter set resulted in an improved ability 
to simulate low flows with no loss in predictive capacity for mid to high flows.  

• An educated transposition of parameter sets from gauged to ungauged catchments was better than 
random assignment of model parameters, whilst assigning model parameters on the basis of spatial 
proximity outperformed physical similarity methods. For simulating the lower-half of the FDC no 
clear method was best for regionalising model parameters and no method was better than randomly 
assigning intact model parameter sets. 

• The best performing multi-model ensemble (Sacramento and IhacresClassic) and the best method 
of parameter regionalisation (spatial proximity) performed similarly to statistical regression 
approaches in predicting mean annual flows. However, the regression approaches demonstrated 
more skill predicting low-flow metrics.  

• There may be opportunities to improve low-flow NSE metrics under calibration mode through 
‘smarter’ calibration procedures. However, it is unlikely that this will result in improved 
performance under prediction mode. 

• There may be opportunities in the future to incorporate regression-based results into the 
calibration/regionalisation process to improve low-flow simulations 
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