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Abstract: CSIRO has been developing climate projections since the 1980s and released national 
projections for Australia in 1988, 1992, 1996, 2001 and 2007. As these were designed communicate nation- and 
state-wide changes to a range of users, the projections focused on individual climate variables, such as 
temperature, with a range of uncertainty derived from multiple climate models. Over this time, CSIRO has also 
been involved in many impact assessments with collaborators and clients. These usually require projections 
tailored for specific applications. Such applications require internally consistent combinations of climate 
variables such as those based on output from individual models. 

However, many end-users of projections find the complexity (including the range of uncertainty) difficult to 
deal with. There are projections from up to 24 global climate models (GCMs), up to six emission scenarios, and 
around a dozen climate variables. Given limited resources, end-users often seek a narrower range of projections 
for their applications. 

CSIRO Marine and Atmospheric Research has developed a novel approach to deal with this issue in a way that 
is tailored to the specific needs of applications. The Climate Futures Framework allows climate scientists, in 
close consultation with end-users, to provide simplified projections while still addressing uncertainty. This 
approach also facilitates the selection of a sub-set of climate models from which internally consistent data can 
be obtained for multiple variables. 

The Climate Futures Framework classifies the GCM projected changes into pre-defined categories (called 
climate futures) defined by two climate variables – commonly the change in annual mean surface temperature 
and annual average rainfall. Each climate future is assigned a relative likelihood based on the number of climate 
models that fall within that category. For example, if 12 of 24 models fall into the “Warmer – Drier” climate 
future, it is given a relative likelihood of 50%. 

In most cases, this results in a small number of climate futures, each with a relative likelihood. It is then possible 
to further simplify the projections using a risk assessment approach (where risk = consequence x likelihood). In 
consultation with the decision makers, key climate futures that directly influence the decision-making are 
identified for further assessment.  Any other climate futures that will not affect decision-making can be ignored 
for the purposes of the particular impact assessment. 

Once the relevant climate futures and key variables have been identified, multi-variate ranking is used to 
determine the most representative model(s) from each climate future. This subset of models can then be used to 
generate internally consistent datasets. 

CSIRO has been using the Climate Futures Framework to provide climate change projections and associated 
datasets to clients within and outside Australia since 2009. Although focussed research into client attitudes to 
the approach is yet to be undertaken, initial feedback suggests it is a useful aid to understanding projected 
changes and their associated uncertainty, while simplifying the selection of a small number of models for use in 
risk assessment. 

The Framework also offers other benefits, including improved communication of projections to a wide 
audience.  This paper will focus on its use in providing application-specific datasets. 
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1. INTRODUCTION 

Demand for climate projections data has increased in recent years from practitioners interested in understanding 
possible impacts of climate change on biophysical and social systems. For example, the number of requests 
received by CSIRO Marine and Atmospheric Research for projections and related data increased from around 4 
requests per month in late 2008 to almost 9 in mid-2011. The requests have also become more complex with 
many clients seeking localised, multi-variate projections applied to an appropriate observed dataset, often in the 
form of a time-series (e.g. for use in an impacts model).  

In order to maximise the robustness of the resultant impact assessment, it is essential to ensure the projections 
data are internally consistent. That is, the values for all variables must be consistent with each other (physically 
plausible).Values obtained from a single GCM have this ‘internal consistency’. Combining results from multi-
model PDFs based on single variables do not have this consistency. 

Appropriate sampling of uncertainty is a fundamental part of risk assessment. Using data from 24 GCMs (23 
from CMIP3 plus the CSIRO-Mk3.5 model) is often unviable for end-users with limited resources. Selecting a 
small number of models should be based on criteria that limit bias and are as objective as possible. While it may 
be tempting to use a single “mid-range” model, this overlooks other out-lying and potentially important future 
climates. A common approach to this issue has been to select a small number of ‘best’ climate models based on 
their ability to represent the current climate (e.g. Pitman and Perkins 2008; Smith and Chandler 2010). This 
approach suffers from a lack of consensus on how to assess the ‘best’ models and does not account for the need 
to represent the range of uncertainty among the full suite of available model projections. 

The Representative Climate Futures (RCF) framework (Whetton et al. submitted), hereafter referred to as the 
Climate Futures Framework, overcomes these limitations by classifying the projected changes from the full 
suite of climate models into classes defined by two climate variables (usually the change in annual mean 
temperature and rainfall – see Figure 1). Relative likelihoods are assigned to each class or climate future based 
on the number of climate models that fall within that category. For example, if 12 of 24 models fall into the 
“Warmer – Drier” climate future, it is given a relative likelihood of 50%. A subset of models can be selected to 
represent any or all of the climate futures. A software tool has been developed to facilitate use of the framework 
at a regional level (but not as yet to deal with the less common, but more challenging multiregional case). The 
tool provides projections for up to 11 climate variables, three time periods and six emissions scenarios 
(Nakićenović and Swart 2000). In this paper, we demonstrate the application of the framework (via the tool) to a 
hypothetical Australian case study – rainfall harvesting in Perth. 

 

Figure 1 Stylised scatter plot representing classification of GCM projected changes into climate futures 
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2. HYPOTHETICAL CASE STUDY: RAINFALL HARVESTING IN PERTH 

To illustrate the approach, projected changes in key climate variables will be produced for a grid-square 
(approximately 500 × 500 km) encompassing Perth (31°57′8″S, 115°51′32″E). This is normally undertaken as a 
consultative process with the end-user of the projections data – typically a decision maker undertaking a climate 
change risk assessment.  

2.1. Step 1: Generate the climate futures 

In consultation with the client, the time-period, emissions scenarios and key climate variables are determined. 
These are then used to generate the climate futures. For this example, we will explore the changes in rainfall, 
temperature and potential evapotranspiration (wet areal evapotranspiration, sensu Morton 1983) in 2050 under 
two emissions scenarios: B1 and A1FI representing low and high emissions, respectively (Nakićenović and 
Swart, 2000).  As evapotranspiration change is strongly correlated with mean temperature change (0.9 for the 
Australian region; Whetton et al. submitted, Table 2), it is appropriate to use temperature as one of the 
classifying variables, the other being rainfall (Figure 2). As a general principle, the full suite of available models 
should be used to generate the climate futures to ensure the full range of uncertainty as given by GCMs is 
explored. Since not all models provide data on potential evapotranspiration, using mean temperature as a 
surrogate permits the use of all models (the availability of data influences model selection later in the process).  

The relative likelihood classes used and their colour codes are shown in Table 1. 

 

Table 1 Likelihood categories and colour codes used in the climate futures matrix 

Likelihood  Proportion of models 
Not projected  0 

Very low  < 10% 
Low  > 10 to 33% 

Moderate  > 33 to 66% 
High  > 66 to 90% 

Very high  > 90% 

 

 

 

Figure 2 Climate Futures ‘matrices’ for the 500 x 500 km region encompassing Perth, classified by changes in 
annual surface temperature and rainfall and showing relative likelihoods based on model density 
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Figure 2 (bottom) shows the projected changes for the low emissions future range from ‘Slightly Warmer’ to 
‘Warmer’ and ‘Little Rainfall Change’ to ‘Drier’. It also shows that a future with little change in rainfall is 
relatively more likely (15 models) than a drier future (9 models), although the difference is not great. In contrast, 
Figure 2 (top) shows that the projected changes under the high emissions scenario give much greater spread, 
with seven climate futures. However, five of these have very low relative likelihoods, with only one or two 
models supporting the futures. In addition, the model spread clearly favours a future with reduced rainfall. In 
each case, a relative ‘most likely’ climate future (combining rainfall and temperature changes) can be identified. 
In addition, the lower likelihood climate futures are readily identified and some or all of these may be of 
relevance to a particular risk assessment. 

2.2. Step 2: Define application-relevant cases and examine the model results 

For a given risk assessment, it is usually possible to identify a subset of the climate futures that represent ‘cases’ 
that will directly affect the decisions to be made. Each of these has one or more associated ‘consequences’ 
(identified by the end-user) and relative likelihood (derived from its climate future). In this example, the key 
climate futures are called the ‘most likely’, ‘worst’ and ‘best’ cases.  

The ‘most likely’ case is the climate future represented by the greatest number of models. This is not always a 
clear-cut choice. Here we define the ‘most likely’ climate future as that which contains more than 1/3 of the 
total number of models, where the number must be at least 3 greater than the next most populous climate future. 
Note that sometimes it is not possible to describe any one of the projected climate futures as ‘most likely’. 

The ‘best’ case definition is dependent on the details of the risk assessment being undertaken. In this example, 
the best case will be defined as that climate future that would result in the highest rainfall (highest priority) and 
lowest evaporation (in other words, the ‘wettest and least-hot’). This may minimise the need for investment in 
additional water capture infrastructure. 

The ‘worst’ case is also dependent on the risk assessment. For this example, the worst case will be defined as 
the climate future that would result in the least rainfall (highest priority) and highest evaporation (in other 
words, the ‘driest and hottest’). Such a future is likely to result in increased investment in water capture and 
storage infrastructure. 

In this example we have used all available (24) GCMs to generate the climate futures. In some regions it may be 
desirable to reject some models based on a multi-factor analysis of model performance (e.g. Irving DB et al. 
submitted; Smith and Chandler 2010). 

The key climate futures for each of the selected cases are shown in Table 2 with notes on consequence and 
likelihood. 

 

Table 2 Key climate futures for a hypothetical rainwater harvesting assessment for Perth in 2050 

Case Consequence 
Low Emissions (B1) High Emissions (A1FI) 

Climate Future Likelihood Climate Future Likelihood 

‘Best’ 
Least investment in 
new infrastructure 

Slightly Warmer 
and Little Rainfall 

Change 
Low (2 models) Hotter and Wetter Very Low (1 model) 

‘Worst’ 
Greatest investment 
in new infrastructure 

Warmer and Drier Low (7 models) 
Much Hotter and 

Much Drier 
Very Low (1 model) 

‘Most Likely’ 
Usually intermediate 
impact, although not 

always 

Warmer and Little 
Rainfall Change 

Moderate (12 
models) 

Hotter and Much 
Drier 

Moderate (12 
models) 

 

 

Each of the key climate futures can now be examined in more detail. For illustrative purposes, we will just focus 
on the high emissions scenario (A1FI). In practice, the steps would be repeated for the low emissions scenario. 

Once the key climate futures have been identified, changes in all variables of interest can be explored – in this 
example, we require seasonal changes in mean temperature, rainfall and potential evapotranspiration. The tool 
displays the selected variables within the climate futures matrix. The output is shown in Figure 3 – in order to 
save space, just the key climate futures have been extracted from the display 
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2.3. Step 3: Identify a representative model for each key climate future and generate internally consistent 
data 

Ideally, results from all models within each climate future would be used in the risk assessment. However, in 
order to ensure the data used are internally consistent, this requires the risk assessment process to be undertaken 
separately for each model. In this example that would be 12 times for the ‘most likely’ and one each for the 
‘best’ and ‘worst’ cases. For many end-users, this is not practicable due to time or resource constraints. 
However, once the range of projections has been sub-divided into climate futures, a range of methods can be 
used to choose one or more representative models from each climate future. The climate futures tool does this 
using a statistical multi-variate ranking technique (Kokic et al. 2002). The results of the ranking for the ‘most 
likely’ climate future for our hypothetical case study are shown in 

 

Figure 4. Note that the method ignores any model which cannot provide all of the data requested – hence only 4 
of the 12 models are ranked. 
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.  

Figure 3 Model-specific change data from each model within the a) ‘most likely’ (Hotter and Much Drier), b) 
‘best’ (Hotter and Wetter), and c) ‘worst’ (Much Hotter and Much Drier) case climate futures for 2050 A1FI. 

Summer is DJF, autumn is MAM, winter is JJA and spring is SON. 
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Figure 4 Model ranking tool, showing that the “FGOALS-g1.0” model is the most representative (rank 1) of the 
ensemble mean of the ‘most likely’ climate future. 

For this ranking, surface temperature was rated as lower priority than potential evaporation and rainfall, and 
each model’s results were compared to the ensemble means. Once the models have been ranked, it may be 
useful to apply knowledge of a model’s regional skill (such as its ability to simulate rain-bearing cold fronts 
over south-west Western Australia) where such information is available. For our example, we will simply use 
the top ranked (“FGOALS-g1.0”) model to represent a ‘most likely’ climate future for 2050 A1FI. As there is 
only one model in each of the ‘best’ and ‘worst’ case climate futures, model selection is not necessary. The 
selected models for each case are shown in Table 3. 

Depending on the needs of the application, the projected changes may be used directly or the selected models 
used for dynamical or statistical downscaling to obtain higher resolution information. 

 

Table 3 Representative model for each case, showing the climate futures description and likelihoods. 

Case Climate Future Likelihood Representative Model 
‘Best’ Hotter and Wetter Very Low INM-CM3.0 

‘Worst’ Much Hotter and Much 
Drier 

Very Low CSIRO-Mk3.5 

‘Most Likely’ Hotter and Much Drier Moderate FGOALS-g1.0 
 

2.4. Step 4: Applying the results 

When reporting and using the results, it is essential they are always presented within the context of the Climate 
Futures Framework. Failure to do so may lead to under-representing the range of uncertainty among the 
projections. The range of projections can be readily described with reference to the climate futures (see Step 1, 
for an example) and this ensures the context of the selected key climate futures is communicated. 

The projected changes are relative to the mean climate centred on 1990, which is consistent with the baseline 
used by the IPCC in their 4th Assessment Report. The current version of the software uses a 30-year (1975-
2004) model baseline. This is important when comparing the projected changes to the ‘current’ or past climate, 
either qualitatively or using some form of statistical downscaling based on past climate observations. 

In addition, it is important to acknowledge that the individual models, while objectively selected as 
representative of their associated climate futures, are nonetheless just one simulation of the possible future 
climate.  

2.5. General comments 

The above hypothetical case study is a relatively simple example that facilitates conceptual understanding of the 
approach. In practice, it is important to explore the influence of seasonal changes on the climate futures because 
annual mean changes can sometimes mask seasonal changes, particularly in rainfall. However, once the seasonal 
changes are understood (and described), it is still often appropriate (and much simpler) to use annual changes to 
define the climate futures. 

Further, where the assessment requires data that permit comparisons among time periods, model selection is 
more complicated. Ideally, a single model would be used to represent a given climate future at each time period. 
This is usually achievable but may involve compromises such as selecting a lower ranked model for one time 
period.  

3. CONCLUSIONS 

The process described in this paper (and Whetton et al. submitted) draws heavily on the authors’ many years 
experience in working closely with end-users of climate projections.   We have found the approach useful and 
popular with end-users. 

The advantages of the Climate Futures Framework over more traditional approaches were twofold.  Firstly it 
allows decision makers to obtain climate projections that are representative of the range of projections, but in a 
way that is directly relevant to their decision-making. By also providing information on the relative likelihoods 
of the relevant climate futures, the approach is directly applicable to use in risk assessment frameworks. 
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Secondly, the selection of a sub-set of models to represent the key climate futures facilitates the provision of 
internally consistent, multivariate datasets. This reduces the amount of data that needs to be managed. Demand 
for such datasets is rapidly growing among the impacts and adaptation community. 

The Climate Futures software tool is currently being developed into a user-friendly web-tool for Australia. A 
Pacific version (www.pacificclimatefutures.net), providing projections for 15 developing island nations has 
been developed as part of the Pacific Climate Change Science Program (www.pacificclimatechangescience.org). 
The tool has three levels of user access: Basic (available to anyone), Intermediate and Advanced (presently 
available only to accredited users). The roll-out to all 15 countries was completed in November 2011 and was 
accompanied by a four-day, face-to-face training course for advanced users. 
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