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Abstract: Quantile-quantile bias-correction has been used in several northern hemisphere studies to 
improve the utility of regional climate model (RCM) outputs, however the technique is rarely used in 
Australia. The technique has the advantage of preserving complex changes in the RCM projections – e.g. to 
weather systems, dry spells, rainfall intensities, mean rainfalls, rainfall extremes – in hydrological 
modelling. The technique also has the advantage of retaining the physical correlation between rainfall and 
evapotranspiration.  

We apply a quantile-quantile bias-correction to an ensemble of six fine-scale (10 km) regional climate 
simulations for 1961-2100 over Tasmania generated by the Climate Futures for Tasmania project 
(http://www.acecrc.org.au/Research/Climate%20Futures). The regional climate simulations show a high 
degree of skill in replicating spatial patterns of mean annual rainfall (spatial correlation R2=0.75) and 
require relatively modest bias-corrections. Multiplicative bias-corrections are calculated for daily values of 
rainfall and evapotranspiration for the calibration period 1961-2007. Bias-corrections are calculated 
independently for each grid cell, for each season and for each percentile. The bias-correction substantially 
improves spatial correlation between modelled and observed seasonal and annual rainfall (spatial 
correlation R2>0.99). We use split sample cross-validation to find that the projected changes to rainfall are 
insensitive to the period chosen to train the bias-correction.  

Spatial relationships of daily rainfalls are not explicitly accounted for by the bias-correction. To test the 
simulation of spatial relationships of rainfall we aggregate rainfalls to the seven Tasmanian Bureau of 
Meteorology forecast zones. The behaviour of biases of aggregated rainfall for each zone is compared to the 
behaviour of biases in individual grid cells within that zone. These comparisons indicate that the bias-
corrected RCM outputs tend to overestimate large regional rainfall events and underestimate small regional 
rainfall events.  

We test the performance of the bias-correction by using bias-corrected rainfall and evapotranspiration as 
inputs to five hydrological models (AWBM, IHACRES, Sacramento, SIMHYD, SMAR-G). Performance 
of the hydrological models is assessed at 86 flow gauges across Tasmania. Performance of hydrological 
models with bias-corrected RCM inputs varies between models. AWBM, Sacramento, SIMHYD and 
SMAR-G simulate runoff realistically with bias-corrected RCM inputs, while IHACRES does not. The 
SIMHYD model gives the most realistic results (median bias -3%) while the IHACRES model gives the 
poorest results (median bias -21%). Our study supports the findings of northern-hemisphere studies that 
quantile-quantile bias-correction can effectively couple RCM outputs to hydrological models. Historical 
Tasmanian stream flows are realistically simulated with bias-corrected RCM outputs, while the climate 
change signal is successfully retained. 
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1. INTRODUCTION 

It is well established that regional climate models (RCMs) do not produce outputs that are sufficiently 
accurate for direct input into hydrological modelling (Wood et al. 2004). This problem has been solved by 
applying various bias-correction techniques to RCM outputs to make them suitable for hydroclimatological 
studies. Simple perturbation of observed rainfall and evaporation has been the most popular of these 
techniques in Australia (e.g. Chiew et al. (2009)), However, as Fowler and Kilsby (2007) point out, simple 
perturbation does not account for changes to rainfall variability or for changes in the sequences of wet and 
dry days, even though these are likely to have significant impacts on water availability. Quantile-quantile 
bias-correction removes biases across the entire frequency distribution of a given variable, and has been 
shown to be highly effective at removing biases from climate model outputs while retaining changes to 
rainfall frequency and variability (Ines and Hansen 2006). Quantile-quantile bias-correction has been shown 
to be effective for coupling regional climate model (RCM) output directly to hydrological models (Fowler 
and Kilsby 2007). This method has the considerable advantage of transferring the complex suite of rainfall 
changes projected by RCMs to hydrological models, including changes to rainfall distributions, rainfall 
characteristics at short temporal scales (e.g. maximum daily precipitation, autocorrelation of rain days) and 
longer time scales (annual and seasonal). This allows more meaningful assessments of future runoff 
variability. 

Quantile-quantile bias-correction has been successfully employed to couple RCMs to hydrological models 
in several northern hemisphere studies (e.g. Wood et al. (2004), Fowler and Kilsby (2007)). This paper tests 
the suitability of this method in the Australian context by assessing its performance over Tasmania. 

2. METHODS 

2.1. Regional climate modelling 

We use the six regional climate simulations produced by the Climate Futures for Tasmania project 
(http://www.acecrc.org.au/Research/Climate%20Futures) covering the period 1961-2100. Climate 
simulations are produced by downscaling global climate models (GCMs) with the CSIRO conformal cubic 
atmospheric model (CCAM) (McGregor and Dix 2008). CCAM is a global atmospheric model that uses a 
stretched grid to increase the resolution over the region of interest. Unlike limited area models, CCAM has 
no lateral boundaries. For this study CCAM is configured to be forced only by GCM sea surface 
temperatures (SSTs) and sea ice concentration. Six GCMs from the coupled model intercomparison project 
(CMIP-3) are downscaled under the SRES A2 emissions scenario: CSIRO-Mk3.5, ECHAM5/MPI-OM, 
GFDL-CM2.0, GFDL-CM2.1, MIROC3.2(medres) and UKMO-HadCM3. Biases inherent in the GCM 
SSTs are removed using a simple additive bias-correction before downscaling (Katzfey et al. 2009). The 
downscaling is carried out in two stages. The first stage is forced only using the bias-corrected GCM SSTs 
and sea-ice concentration and achieves a horizontal resolution of 0.5° (~50 km) over Australia. The second 
stage is forced using the same bias-corrected GCM SSTs and sea-ice concentration along with spectral 
nudging of the atmosphere from the corresponding 0.5° simulations, achieving a horizontal resolution of 
0.1° (~10 km) over Tasmania. 

2.2. Quantile-quantile bias-correction 

We use a multiplicative quantile-quantile bias-correction to align simulated daily rainfalls and areal 
potential evapotranspiration (APET) to 0.1° (~10 km) gridded interpolated observations. In this paper, we 
focus on the results for rainfall. Gridded observations are aggregated from the 0.05° (~5 km) gridded SILO 
dataset (Jeffrey et al. 2001).  

Unlike many other studies using quantile-quantile bias-correction (e.g. Ines and Hansen et al. (2006)) we do 
not assume a shape for the frequency distribution of rainfall or APET. Rather, we calculate correction 
factors at each half percentile from 0.5 to 99.5 for the entire distribution (including days of zero rain). 
Percentiles are calculated using linear interpolation between closest ranks. Correction factors are calculated 
independently for each season (DJF, MAM, JJA, SON) and at each grid cell for the calibration period 1961-
2007. Our method has the advantage of being entirely predicated on data, rather than on assumed frequency 
distributions. Our method does not explicitly align the number of rain days in observed and bias-corrected 
time series in the manner of Ines and Hansen et al. (2006). We force any rain day with rainfall of less than 
0.2 mm to zero in both observed and modelled rain time series. The threshold of 0.2 mm is chosen because 
it is the lower resolution limit of the Bureau of Meteorology (BoM) rain gauges used as the basis of the 
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SILO dataset. Rainfalls of <0.2 mm per day in the observed rain timeseries (and, by extension, in the bias-
corrected rain timeseries) are more precise than the accuracy of gauged rainfalls allows. The entire 
simulation (1961-2100) is detrended with a 30-year moving average to remove any long-term changes in 
rainfall regimes. Each day from this detrended series is consigned to a percentile ’bin’ between integer 
percentiles (i.e. percentile bins of 0-1, 1-2, …, 98-99, 99-100). The bias-correction is then applied to the 
entire uncorrected simulation based on these bins: the factor calculated for the 0.5th percentile is applied to 
the 0-1 percentile bin, the factor for the 1.5th percentile is matched to the 1-2 percentile bin, and so on. 
Finally, bias-corrected CCAM outputs are regridded from the 0.1° (~10 km) CCAM grid to a 0.05° (~5 km) 
grid to be compatible with the hydrological models. 

2.3. Testing performance of the bias-corrected RCM outputs  

The bias correction is evaluated using split-sample 
cross-validation. We compare two cases of split-
sample cross-validation, in addition to the bias-
correction calculated for the entire calibration 
period, which we call the 47-year case (Table 1).  

The bias-correction corrects biases only at 
individual grid cells. It takes no account of the 
spatial correlation of rain storms across 
catchments. We assess the ability of the bias-
corrected RCM outputs to replicate the spatial 
characteristics of rainfall by aggregating modelled 
and SILO rainfalls to the Bureau of Meteorology 
(BoM) forecast zones (Fig 1). Biases of 
aggregated rainfall in a given zone are compared to the biases of all individual grid cells within that zone. 

2.4. Hydrological modelling 

We use the five rainfall-runoff 
models calibrated by Viney et al. 
(2009) to 90 stream flow records for 
1975-2007 for catchments around 
Tasmania: AWBM (Boughton 
2004), IHACRES (Post and 
Jakeman 1999), Sacramento 
(Burnash et al. 1973), SIMHYD 
(Chiew et al. 2002) with 
Muskingum routing (Tan et al. 
2005), and SMAR-G (Goswami et 
al. 2002). These models produce 
runoff distributed on a 0.05° grid 
covering all of Tasmania. Stream 
records were from catchments that 
had negligible human influence on 
flows. To achieve Tasmania-wide 
coverage with the five runoff 
models, Viney et al. (2009) 
assigned model parameters to ungauged catchments from their nearest gauged neighbour. We use the bias-
corrected CCAM rainfall and APET outputs as direct inputs to the rainfall-runoff models.  

3. RESULTS 

3.1. Ability of quantile-quantile bias-correction to remove a range of biases 

All results presented here are calculated from averages of the six climate simulations. The bias-correction 
proved very successful at correcting a variety of rainfall characteristics (Table 2). As expected, spatial 
correlations of simulated rainfall with observations for mean annual and seasonal rainfall become near 

 
Table 1 Periods used to train and test bias-

correction 

 Name Calibration 
Period 

Validation 
Period 

 47-year case 1961-2007 - 

 Case 1 1962-1984 1985-2007 
 Case 2 Odd years 

1961-2005 
(1961,1963,… 
,2003,2005) 

Even years 
1962-2006 
(1962,1964,… 
,2002,2004) 

    

 

 

 
 
Districts 
1. North East & Flinders 

Island 
2. East Coast 
3. Central North & 

Midlands 
4. South East Huon & 

Channel & Lower 
Derwent Valley 

5. Central Plateau & Upper 
Derwent Valley West & 
South Coast & Highlands 

6. Northwest Coast & King 
Island 

 

 
Figure 1 Bureau of Meteorology (BoM) forecast zones for 

Tasmania. Source: www.bom.gov.au 
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perfectly correlated with observations, as does the variance of daily rainfall (represented as the coefficient 
of variation, CV) (Table 2). The spatial correlation of the number of raindays is substantially improved by
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the bias-correction. The 
CCAM simulations tend to 
have more rain days than 
observations. The additional 
rain days in the modelled 
timeseries are forced to no-
rain days by the bias-
correction, resulting in the 
close match between the 
number of observed and bias-
corrected CCAM raindays. 
Interestingly, the variance in 
annual rainfall (CV) is also 
improved in the drier east of 
Tasmania (Table 2, Fig 2). 
Rainfall in this region is more sporadic and less strongly seasonal than over wetter western Tasmania. As a 
consequence, correcting daily variance has the effect of partly correcting annual variance in the east (Fig 2). 

 

Figure 2 Absolute biases of uncorrected CCAM outputs minus absolute biases of bias-corrected CCAM-
outputs. Maps (l-r) show improvement in biases in mean annual rainfall, mean annual raindays > 1 mm, 
daily coefficient of variation (CV) and annual CV. CCAM statistics are the mean of the six simulations. 

 

Biases in mean annual rainfall and raindays and daily and annual CV are effectively reduced by the bias-
correction. Fig 2 shows the difference in absolute biases between uncorrected RCM rainfalls and bias-
corrected RCM rainfalls. In almost all regions, biases in mean annual rainfall and raindays are reduced. 
Representation of daily CV is improved over the east coast, resulting in improved annual CV in this area. 
There are slight increases in biases in annual CV in the north-west of Tasmania.  

 

Fig 3 Effects of bias-correction on projected future rainfall changes. (a) shows changes to bias-corrected 
rainfall from 1961-1990 to 2070-2099; (b) shows percent change of rainfall from bias-corrected CCAM 

outputs minus percent rainfall change from uncorrected CCAM outputs; (c) shows range of percent changes 
from the three cross-validation cases (Table 1). CCAM changes are the mean of the six CCAM simulations. 

 
Table 2 Spatial correlations of simulated rainfall with SILO gridded 

observations. CCAM statistics are the mean of six simulations. 
 

Spatial Correlations (R2) 
CCAM and 

SILO  
Bias-corrected 

CCAM and SILO 
 

Mean Rainfall 
(mm) 

DJF 0.64 0.9994 
 JJA 0.76 0.9998 
 Annual 0.75 >0.9999 
 

Coefficient of 
Variation (CV) 

Annual 
CV 0.60 0.76 

 Daily CV 0.79 0.99 
 

Raindays 
(> 1 mm) 

DJF 0.26 0.9998 
 JJA 0.26 0.9998 
 Annual 0.27 >0.9999 
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3.2. Comparing bias-corrected and uncorrected climate simulations 

Rainfall changes projected with 
uncorrected CCAM outputs differ in 
magnitude from changes projected with 
bias-corrected CCAM outputs (Fig 3a) 
in some parts of Tasmania. Uncorrected 
projections for mean annual rainfall 
from the mean of the six simulations are 
as much as 8% drier in the south-east of 
Tasmania than bias-corrected 
projections (Fig 3b). Uncorrected and 
bias-corrected projections always agree 
on the sign of changes (not shown).  

3.3. Split sample cross-validation 

Biases in mean annual rainfall of the 47-
year case are virtually eliminated for the 
calibration period (1961-2007) (Fig 4). 
Cross-validation Cases 1 and 2 show 
that biases increase in the order of ±10% when the bias-correction is validated against a period independent 
of the calibration period (Fig 4), indicating that the bias-correction is somewhat sensitive to the period 
chosen for calibration. Despite this, the choice of calibration period has almost no effect on the magnitude 
of projected changes. The range of changes in mean annual rainfall from 1961-1990 to 2070-2099 
calculated from Case 1, Case 2 and the 47-year case are shown in Fig 3c. No matter which case is used, the 
changes do not vary by more than ±1% for almost all of Tasmania, and all differences are smaller than 2%. 

3.4. Characteristics of rainfall bias over regions 

Rainfall biases for total rainfall in the BoM forecast zones (Fig 1) and biases for the individual grid cells 
contained in each BoM forecast zone are given in Fig 5 for larger rainfalls (70th–100th percentile) using 
outputs from CCAM forced by the CSIRO-Mk3.5 GCM. The behaviour of spatial biases is very similar for 
all climate simulations (not shown). We concentrate on larger rainfalls because a higher proportion of 
rainfall is converted to runoff in large rainfall events. Biases in larger rainfall events could magnify biases 
in runoff. The bias-corrected outputs tend to underestimate regional rainfall totals for lower rainfall events 
and over-estimate regional rainfall totals for higher rainfall events (Fig 5). This contrasts the behaviour of 
individual cells within regions, which have biases that are approximately normally distributed around zero 
irrespective of event size (Fig 5), excepting when either modelled or observed rainfalls are zero (not 
shown). Biases at individual grid cells are not perfectly eliminated by the bias-correction because the bias 
correction is applied to the length of the simulation (1961-2100) rather than only to the calibration 
period (1961-2007).  

3.5. Hydrological modelling 

Fig 6a shows frequency distributions of biases at 86 gauge sites in Tasmania for the five runoff models 
when forced by CCAM and SILO. AWBM, SIMHYD, Sacramento and SMAR-G showed similar median 
biases when forced by CCAM as when forced by SILO. Overall, biases are larger for runoff forced by 
CCAM. Interquartile ranges of biases in mean flows increase for all hydrological models forced by CCAM. 
SIMHYD and AWBM showed the least change in median bias and the smallest increase in interquantile 
range of biases. The IHACRES model performs poorly when forced with CCAM in relation to the other 
hydrological models, with a significant decline in median bias and a much greater interquartile range. 

All hydrological models display a tendency to predict lower flow volumes when forced by CCAM (Fig 6a). 
This is highlighted by looking at the biases in the high flows (Q95) (Fig 6b) of hydrological models forced 
by CCAM when compared to flows modelled by forcing hydrological models with SILO at 86 gauge sites. 
The CCAM-forced hydrological models produced lower Q95 flows than SILO-forced hydrological models 
at more than 70% of catchments. 

 

 Fig 4 Performance of bias-correction under cross-validation. 
Left map shows biases for mean annual rainfall of 47-year 
case for the calibration period (1961-2007) compared to 

observations, centre and right maps show biases of Case 1 
and Case 2 compared to validation periods (Table 1). 
CCAM statistics are the mean of the six simulations. 
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Fig 6 (a) Box plots of biases for hydrological models forced by SILO inputs (red) and by CCAM inputs 
(black) at 86 catchments calculated from the average of the six climate simulations; boxes indicate 25th, 50th 

and 75th percentiles, whiskers are two standard deviations from the mean, points are outliers, grey lines 
show biases of ±10%. (b) Cumulative probability plot of biases in high flows (Q95) forced by CCAM 
calculated against Q95 flows forced by SILO; shaded areas show range of the six climate simulations.  

4. DISCUSSION AND CONCLUSIONS 

The quantile-quantile bias-correction method used in this study proved effective at reducing a range of 
biases from regional climate simulations of rainfall over Tasmania, including mean annual and seasonal 
rainfall and the number of raindays. It also reduced the bias in interannual variability in low rainfall regions. 
Cross-validation shows that the performance of quantile-quantile bias-correction declines in independent 
validation periods, however the validation biases of ± 10% are still small compared to the biases of > 50% 
for the uncorrected model output (Fig 2). Further, projected future changes to mean rainfall are insensitive 
to the period chosen to calibrate the bias-correction, indicating that the choice of training period is not a 
crucial consideration when assessing future change. There was some discrepancy in changes projected by 
uncorrected model outputs and bias-corrected regional outputs. These tended to be in the drier, eastern parts 
of Tasmania, particularly in areas that showed marked future increases in rainfall. The causes of the 
discrepancy are unclear.  

Biases in total rainfall over regions behaved differently from biases at individual grid cells. The tendency of 
the bias-corrected CCAM rainfalls to over-predict large regional rainfall events in all regions of Tasmania 
could be expected to lead to an even larger positive bias in runoff. However, runoff models forced by bias-
corrected CCAM inputs tended to underpredict flows modelled with the same hydrological models forced 

 

Figure 5 Spatial biases of bias-corrected rainfalls produced by CCAM forced by CSIRO-Mk3.5 for the 
period 1961-2007. Red lines show biases of total rainfall over BoM forecast zones (see Fig 1) of bias-

corrected CCAM rainfalls compared to SILO. Blue lines describe the range of biases, here defined as the 
5th and 95th percentile of biases, at all individual grid cells contained within each forecast zone. 
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by SILO. We speculate that this may be due to poor representation of the temporal characteristics of rainfall 
events, either by CCAM or by the bias-correction. More investigation is required to determine the causes of 
the spatial biases and the tendency of hydrological models to under-predict flows when forced by CCAM.  

We have shown that quantile-quantile bias-correction can effectively couple regional climate simulations to 
hydrological models in the Australian context. The method produces realistic river flows for a number of 
hydrological models and catchments, particularly when using the SIMHYD and AWBM models. IHACRES 
proved highly sensitive to changes in inputs, a finding echoed by Viney et al. (2009), who found that 
IHACRES performed poorly under spatial cross-validation in Tasmania. Care should be taken to test the 
suitability of hydrological models for direct coupling to RCMs if using the methods described here. 

A considerable amount of effort has been invested in recent years in Australia to build complicated sets of 
hydrological models for basin-scale hydroclimatological studies based on GCM inputs (e.g. Chiew et al 
(2009)). We have shown that the potential exists to use quantile-quantile bias-correction to update these 
studies with higher resolution climate projections when these projections become available. 
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