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Abstract: Assessing populations of rare species is challenging because of the large effort required to locate 
patches of occupied habitat and achieve precise estimates of density and abundance.  The presence of a rare 
species has been shown to be correlated with presence or abundance of more common species.  Thus, ecological 
community richness or abundance can be used to inform sampling of rare species.  Adaptive sampling designs 
have been developed specifically for rare and clustered populations and have been applied to a wide range of 
rare species.  However, adaptive sampling can be logistically challenging, in part, because variation in final 
sample size introduces uncertainty in survey planning.  Two-stage sequential sampling (TSS), a recently 
developed design, allows for adaptive sampling, but avoids edge units and has an upper bound on final sample 
size.  In this paper we present an extension of two-stage sequential sampling that incorporates an auxiliary 
variable (TSSAV), such as community attributes, as the condition for adaptive sampling.  We develop a set of 
simulations to approximate sampling of endangered freshwater mussels to evaluate the performance of the 
TSSAV design.  The performance measures that we are interested in are efficiency and probability of sampling 
a unit occupied by the rare species.  Efficiency measures the precision of population estimate from the TSSAV 
design relative to a standard design, such as simple random sampling (SRS).  The simulations indicate that the 
density and distribution of the auxiliary population is the most important determinant of the performance of the 
TSSAV design.  Of the design factors, such as sample size, the fraction of the primary units sampled was most 
important.  For the best scenarios, the odds of sampling the rare species was approximately 1.5 times higher for 
TSSAV compared to SRS and efficiency was as high as 2 (i.e., variance from TSSAV was half that of SRS).  
We have found that design performance, especially for adaptive designs, is often case-specific.  Efficiency of 
adaptive designs is especially sensitive to spatial distribution.  We recommend that simulations tailored to the 
application of interest are highly useful for evaluating designs in preparation for sampling rare and clustered 
populations. 
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1. INTRODUCTION 

Assessing populations of rare species is challenging because of the large effort required to achieve precise 
estimates of density and abundance.  Adaptive sampling designs have been developed specifically for rare and 
clustered populations (Thompson 1990) and have been applied to a wide range of rare species including Pacific 
hake larvae (Lo et al. 1997), rare trees (Magnussen et al. 2005), terrestrial herpetofauna (Noon et al. 2006), 
subtidal macroalgae (Goldberg et al. 2007), plant disease organisms (Ojiambo and Scherm 2008), red sea urchin 
(Skibo et al. 2008), and freshwater mussels (Smith et al. 2003, Outiero et al. 2008, Horbach et al. 2010).  
Compared to conventional sampling designs, adaptive sampling can result in higher efficiency (i.e., higher 
precision for fixed cost) and higher rates of encountering occupied habitat and detecting rare species (Brown 
2003, Smith et al. 2004).  Efficiency depends on spatial distribution (Brown 2003), but encounter and detection 
rates tend to be relatively high with only a modest degree of clustering (Smith et al. 2004).  A criticism of 
adaptive cluster sampling is that the final sample size is random and can be large compared to time allotted to 
complete the survey. 

Two-stage sequential (TSS) sampling (Salehi and Smith 2005, Brown et al. 2008) was developed, in part, to 
solve one of adaptive cluster sampling’s shortcomings – that the final sample size is random and uncontrolled.  
The TSS design does not require a neighborhood, but is adaptive in the sense that it does allow sampling effort 
to increase when the target species is encountered.  A predetermined value C determines if the condition for 
sequential sampling is met.  The condition is typically based on an attribute of the target species, such as, the 
count of individuals within a sampling unit.  

Conventional and adaptive sampling designs are available that make use of auxiliary information, which can be 
useful when the target and auxiliary populations are correlated (Thompson 2002).  The presence of a rare 
species, at least in some communities, has been shown to be associated with overall community density (Myers 
et al. 2000, Hornbach et al. 2010).  Community attributes are more readily observable than the presence of a rare 
species.  Thus, the overall community richness or abundance can be used as an auxiliary variable to inform 
sampling of rare species.  The TSS design can incorporate auxiliary information simply by setting the condition 
C as a function of an auxiliary variable. 

In this paper we present an extension of two-stage sequential sampling that incorporates an auxiliary variable 
(TSSAV), such as the count of the overall community within a sampling unit, as the condition to sequentially 
increase sampling.  We report on a simulation study to examine the general performance of the TSS with 
auxiliary variables design.  The parameters of the simulation study were set to be similar to a study of 
endangered freshwater mussels in Minnesota USA (Hornbach et al. 2010). 

2. METHODS 

2.1. TSSAV Design 

In the TSS design (Salehi and Smith 2005), sampling occurs sequentially, but only within those areas (i.e., 
primary sampling units) where the target species was encountered at a level sufficient to satisfy a predetermined 
condition.  Because the TSS design is two-stage, the study area comprised of N units is divided into M large 
primary units.  Each primary unit contains Ni units. At the first stage of sampling, a sample (m) is selected 
probabilistically.  (When m = M, then the design is equivalent to a stratified sequential sampling design.)  At the 
second stage, an initial probability sample is taken within each primary unit (n1), and if the target species is 
encountered then a sequential sample of pre-determined size (n2) is taken.  Here we consider only the designs 
where sample sizes are constant within each primary unit, i.e., ni1 = n1 and ni2 = n2 for all i from 1 to M, although 
the design can allow sample size to vary among primary units (Salehi and Smith 2005).Thus, the final sample 
size (η) is random, but it is controlled to be within the range of m* n1 ≤ η ≤ m*(n1+ n2). 

Let the count of individuals of the target population in the ith primary unit and jth sampling unit be denoted by yij. 
Similarly, let the count of individuals of the auxiliary population in the ith primary unit and jth sampling unit be 
denoted by xij.  To incorporate auxiliary information into the design (TSSAV), the condition to sequentially 
sample, C, can be a function of the auxiliary variable xij.  For example, the condition C could be satisfied when 
xij≥ C for any sampling unit within the ith primary unit where C is a positive integer.  If at least one sampling 
unit satisfies the condition then a sequential sample of size n2 is taken – this is determined within each primary 
unit independently.  Let li be the number of sampling units in the final sample within the ith primary unit.  The 
estimators for TSS presented in Salehi and Smith (2005) also hold for TSSAV with the exception that li is a 
function the auxiliary variable rather than the target variable. 
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2.2. Estimators 

Salehi and Smith (2005) presented an unbiased estimator for the two-stage sequential sampling based on 
Murthy’s estimator (Murthy 1957, Salehi 2001).  The estimator for population total in ith primary unit (௜) is 

߬̂௜ = ෍ܲሺݏ௜|݆ሻܲሺݏ௜ሻ௝∈௦೔  ௜௝ݕ
where si is the set of units selected in the ith primary unit, P(si) is the probability of selecting the sample si, P(si|j) 
is the conditional probability of  selecting the sample si given the jth unit was selected first in the ith primary unit, 
and yij is the count of individuals of the target population in the ith primary unit and jth sampling unit, The 
probabilities of obtaining si depends on the number of units that satisfy the condition within a primary unit.  Let 
li denote the number of units in the ith primary unit that satisfy the condition C.  In the TSSAV design, li is a 
function of the auxiliary variable.  The ratio of P(si|j)/P(si) is given by 

ܲሺݏ௜|݆ሻܲሺݏ௜ሻ =
ەۖۖۖ
۔ۖۖ
ۓۖۖۖ

௜ܰ݊ଵ 																																																																																					݊ଶ = 0	
௜ܰ݊ଵ + ݊ଶ 																																																															݊ଶ > 0	and	݈௜ < ݊ଶ௜ܰሺ݊ଵ + ݊ଶ − 1ሻ!ሺ݊ଵ + ݊ଶሻ! − ௡మ!ሺ௡భା௡మି௟೔ሻ!ሺ௡మି௟೔ሻ! 																															݊ଶ > 0	and	݈௜ ≤ ݊ଶand	݆	satisfies	ܥ	

௜ܰሼሺ݊ଵ + ݊ଶ − 1ሻ! − ݊ଶ! ሺ݊ଵ + ݊ଶ − 1 − ݈௜ሻ!/ሺ݊ଶ − ݈௜ሻ!ሽሺ݊ଵ + ݊ଶሻ! − ௡మ!ሺ௡భା௡మି௟೔ሻ!ሺ௡మି௟೔ሻ! 				݊ଶ > 0	and	݈௜ ≤ ݊ଶand	݆	not	satisfy	ܥ
 

Variance estimators depend on joint probabilities of selecting units j and j′ in the first draw (Salehi and Smith 
2005).  Because selection of primary units and subsampling are conducted independently, population total for 
the study area is estimated using standard estimators, e.g., Horvitz-Thompson estimators (Thompson 2002, 
Salehi and Smith 2005). 

2.3. Simulation Study 

We set up a series of simulation case studies using estimates of endangered freshwater mussels reported by 
Hornbach et al. (2010) as a basis for target population densities (Table 1).  Endangered species of freshwater 
mussels are often found at low density and 
spatially clustered (Smith et al. 2003, 
Hornbach et al. 2010).  Rarity is thought 
to be ≤0.10 m-2 (Green and Young 1993).  
Hornbach et al. (2010) found densities of 
endangered species to be in the order of 
0.01 m-2.  Expected density for the 
auxiliary population was 1 and 3 m-2, and 
correlation between counts of target and 
auxiliary populations was 0.33 and 0.67 
(Table 1).Figure 1 shows the populations 
for E(ρ) = 0.67.  Primary unit sampling 
fraction (m/M) ranged from 0.25 to 1.0 by 
0.25.  Initial and sequential sampling 
fractions (i.e., n1/N and n2/N, respectively) 
ranged from 0.1 to 0.4 by 0.1.  Condition 
to sequentially sample (C) ranged from 1 
to 5 by 1.  Each case was replicated 1,000 
times, and average estimates were 
considered to be estimates of expected 
values. 

We used the software program SAMPLE 
that was designed for simulating and 

Table 1. Parameters for the simulation case studies.  Density 
(no. m-2) is denoted by µ, coefficient of variation by CV, 
occupancy (i.e., proportion of units occupied) by ψ, and 
expected value by E(•).  The target population parameters 
are denoted by subscript Y, and the auxiliary population 
parameters by subscript X.  The correlation between the 
target and auxiliary populations is denoted by ρ. 

E(µY) E(CVY) E(ψY) E(µX) E(CVX) E(ψX) ρ 

0.01 11.04 0.011 1.0 1.98 0.40 0.33 

0.01 11.04 0.011 1.0 1.98 0.40 0.67 

0.01 11.04 0.011 3.0 1.31 0.79 0.33 

0.01 11.04 0.011 3.0 1.31 0.79 0.67 

0.10 3.93 0.085 1.0 1.98 0.40 0.33 

0.10 3.93 0.085 1.0 1.98 0.40 0.67 

0.10 3.93 0.085 3.0 1.31 0.79 0.33 

0.10 3.93 0.085 3.0 1.31 0.79 0.67 
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comparing sampling designs, particularly adaptive designs (Morrison et al. 2008, Smith et al. 2011).  Each 
design was simulated 1,000 times. SAMPLE accepts sample or population data, depending on whether a 
simulation or an analysis is desired.  The software can be downloaded at https://profile.usgs.gov/drsmith.  
Correlated counts variables were generated using the corcounts package for R. available on the CRAN home 
page (http://lib.stat.cmu.edu/R/CRAN/).  We generated the spatial pattern following the Poisson cluster process 
(Brown, 2003).  The number of clusters was selected from a Poisson distribution, and cluster centers were 
randomly located throughout the site.  Individuals within the cluster were located around the cluster center at a 
random distance following an exponential distribution and a random direction following a uniform distribution.  
Expected cluster size was 100 with an expected radius of 1. 

To evaluate design performance, we used measures of design efficiency, probability of sampling an occupied 
unit, and robustness to model inaccuracy.  Efficiency is the ratio of variance from a simple random sampling 
design to variance from the candidate design with final sample size equal among the two designs.  Final sample 
size is fixed for conventional designs, but is random in adaptive designs.  Thus, for adaptive designs the 
expected sample size was the average of final sample sizes over the 1,000 simulations.  Coefficient of variation 
(CV) was another measure of efficiency and precision.  CV is the ratio of standard error (SE) over density, 
where SE was the standard deviation of the density estimate.   

The probability of sampling an occupied unit was measured by relative risk and odds ratio.  Relative risk is the 
ratio of the proportion of occupied units in the final sample (p1) relative to that of the population (p2).  Thus, 
relative risk of sampling an occupied unit = p1/ p2.   The success of encountering occupied units can also be 

measured using odds ratios (Agresti 1990), where
( )
( )1

2

1

1
risk relative  ratio odds

p
p

−
−×= .   

 

Figure 1.  Four of the 8 populations used as simulation case studies.  Empty circles denote units occupied by 
members of the auxiliary population.  Filled circles denote units occupied by members of the target population.  
Count is ≥ 1 in an occupied unit.  Populations on the left are for moderate auxiliary population density (E[µX]= 
1.0), and populations on the right are for high auxiliary population density (E[µX]= 3.0).  Populations on the top 
are for very rare target population density (E[µY]= 0.01), and populations on the bottom are for moderately rare 

target population density (E[µY]= 0.10).  Expected correlation between target and auxiliary populations was 0.67 
for all 4 populations. 
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We used Random Forests (Breiman 2001) to evaluate the relative importance of population characteristics and 
design factors on estimator efficiency and probability that a sampling a unit is occupied by the target population.  
Population characteristics included density of the target and auxiliary populations and correlation between those 
populations.  Design factors included n1, n2, m1, and criteria to adapt.  Probability of sampling an occupied unit 
was measured by odds ratio. Factors were ranked based on increased node purity, a measure of factor 
importance, as reported from the R package 'randomForest' (Liaw and Wiener 2002). 

3. RESULTS 

Efficiency tended to be > 1 consistently across sampling fraction only for moderate auxiliary population density 
(E[µX] = 1 m-2) and low target population density (E[µY] = 0.01 m-2; Figure 2).  When expected auxiliary 
population density was 1 m-2, but expected target population density was 0.10 m-2, then efficiency tended to 
remain ≤ 1, except for final sample size > 300 (sampling fraction > 0.50).  Correlation had a modest effect; the 
correlation = 0.67 tended to be associated with higher efficiency than for correlation = 0.33.  When expected 
auxiliary population density was 3m-2, tended to remain ≤ 1 regardless of target population density or 
correlation. 

 

Figure 2.Efficiency and odds ratio across final sample size for the simulation cases.Efficiency is the variance 
from TSSAV sampling relative to variance from simple random sampling.  Odds ratio is for the odds of 

sampling an occupied unit by TSSAV sampling compared to simple random sampling.  Graphs on the left are 
for moderate auxiliary population density and occupancy (E[µX]= 1.0; E[ψX] = 0.40), and graphs on the right are 

for high auxiliary population density and occupancy (E[µX]= 3.0; E[ψX] = 0.79).  Symbols and lines differ by 
target population density and correlation between the auxiliary and target population.  (Density and correlation 

are shown in parentheses in the lower-right graph legend.) 
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The probability of encountering units occupied by the target population (as measured by odds ratio) was 
uniformly > 1 for moderate auxiliary population density (Figure 2).  Odds ratio was higher for expected target 
density of 0.01 m-2 than for 0.10 m-2 and for correlation of 0.67 than for 0.33.  When expected auxiliary 
population density was 3 m-2, odds ratio tended to be at or slightly above 1 and tended to remain above 1 as final 
sample size increased. 

Auxiliary population density was the most 
important factor for determining both 
efficiency and probability of sampling an 
occupied unit (Table 2).  Target population 
density and primary unit sample size were 
nearly equally important factors for 
determining efficiency.   Initial sample size 
was moderately important for determining 
efficiency. However, auxiliary population 
density was overwhelming the most 
important factor determining probability of 
sampling an occupied unit. 

 

4. CONCLUSIONS AND RECOMMENDATIONS 

Sample designs, such as probability proportional to size and stratified sampling, have been available for 
incorporating an auxiliary variable that is correlated with the variable of interest to inform sampling (Thompson, 
2002; LeLay et al., 2010; Smith et al., 2011).  However, these designs assume a priori knowledge of the 
auxiliary variable.  The design that we present and evaluate, TSSAV, incorporates observations of the auxiliary 
variable to inform and adapt sampling as the survey progresses.  This can be an advantage when prior 
information is not available, but there is reason to believe that the auxiliary and target variables are correlated.  
The auxiliary variable in the TSSAV design should be more readily or cheaply observed than the target variable.  
Otherwise there would be no advantage over using the target variable itself for adaptively adding units.  In the 
case of sampling freshwater mussels, using a community attribute (e.g., count of all species) ensures that the 
auxiliary variable will be readily observed in the initial sample size while the rare species would be infrequently 
observed among the n1units.  However, the probability of detecting the rare species increases with the addition 
of the sequential sample (n1+n2). 

We developed a set of simulation case studies to approximate sampling of endangered species of freshwater 
mussels (Hornbach et al., 2010), and results are conditional on this set.  However, the simulation results should 
apply to any populations with similar densities, abundances, and correlation.  The results of the simulation 
indicate the following: 

• The density and distribution of the auxiliary population is the major determinant of the performance of 
TSSAV in terms of efficiency and probability of sampling units occupied by the target population.  TSSAV 
is a good candidate design when the auxiliary population density and distribution are moderate. 

• The density and distribution of the target population is an important determinant of the efficiency of 
TSSAV.  As with other adaptive designs, efficiency is linked to rarity and spatial clustering.  Efficiency can 
be expected to tend higher for rarer target populations, all else being equal. 

• Correlation between auxiliary and target populations in the range of 0.33 ≤ ρ ≤ 0.67 was less important than 
expected at determining the performance of TSSAV.  However, higher correlation is expected to increase 
efficiency and probability of sampling occupied units. 

• Of the design factors, the most important was the sample size for the primary units.  As with conventional 
two-stage sampling, efficiency improved as the sampling fraction for primary units increased. 

• A broader set of recommendations for the performance of TSSAV will require a wider evaluation of 
population characteristics and design factors than presented here.  We have found that design performance, 
especially for adaptive designs, is often case-specific.  Efficiency is especially sensitive to spatial 
distribution.  We recommend that simulations tailored to the application of interest are highly useful for 
evaluating designs in preparation for sampling rare and clustered populations. 
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Table 2.  Node purity, which is a direct measure of factor 
importance, from a Random Forests analysis implemented using the 
R package 'randomForest' (Liaw and Wiener 2002). 

Factor Efficiency Odds ratio 
Auxiliary population density (µX) 13.45 16.28 
Target population density (µY) 12.66 2.38 
Correlation (ρ) 1.46 0.68 
Primary sampling unit sample size (m1) 12.64 0.21 
Initial sample size (n1) 8.55 0.50 
Sequential sample size (n2) 3.55 1.16 
Criteria to adapt 1.05 0.26 
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