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Abstract: Spatial-temporal models of the spread of invasive species can require dispersal of large num-
bers of individuals from many locations at recurrent times, making them slow to execute. We present
a fast algorithm for simulating dispersal of large numbers of individuals. The algorithm is stochastic
and can be applied using any bivariate probability density function as the dispersal kernel. It achieves
computational efficiency while still allowing the simulation of rare and important long-distance disper-
sals by combining different approaches for within and outside the tail of the dispersal kernel. The tail is
specified by a given bivariate quantile, where the q-th bivariate quantile is defined to be the contour of
equiprobability within which a proportion 0 < q < 1 of dispersing individuals will settle.

We provide a method for finding bivariate quantiles that can be applied to any bivariate dispersal kernel
derived from independent densities for distance and direction of dispersal. To illustrate this approach, we
show how the Cauchy distribution can be used to produce isotropic and anisotropic bivariate dispersal
kernels by assuming that the direction of dispersal is either random or takes a von Mises distribution.

We show that the algorithm is considerably faster than generating individual random samples from a
bivariate dispersal kernel. It also performs better for larger grid sizes, and when there are larger numbers
of individuals to be spread, than an approach that generates samples from a Binomial distribution for each
grid cell using the probability of dispersal to that cell. The degree of computational efficiency achieved by
the algorithm compared to the Binomial approach depends upon the speed with which random samples
can be generated from the tail of the bivariate dispersal kernel used.
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1 INTRODUCTION

Deterministic models, such as diffusion models (Fisher, 1937; Skellam, 1951) can under-estimate simu-
lation of spread because they do not allow rare long-distance dispersals (Hastings et al., 2005). Stochastic
models can simulate rare long-distance dispersals by moving each individual according to a random sam-
ple drawn from a probability density function (PDF) describing the position of dispersed individuals
relative to the origin of dispersal, called the dispersal kernel (Mollison, 1977). However, a stochastic
spread simulation can require the spread of millions of individuals from each cell in a grid-based model,
and these spread events recur regularly during the simulation, so models can be slow to run.

Using a bivariate dispersal kernel, faster spread modelling is commonly achieved by integrating the PDF
to calculate the probability of dispersal to each cell in the grid from the originating cell, and then multi-
plying that probability by the total numberN of individuals to be spread (e.g., Colbach and Sache, 2001).
The disadvantage is that individuals can not spread past a certain distance, precluding simulation of rare
but important long-distance events. Rare events can be simulated if rounding is avoided and instead the
number of individuals dispersing to each cell is simulated as a random sample from a Binomial distribu-
tion P (N, p), where p is the probability of dispersal to that cell. However, this approach can be slow for
large grid sizes.

We present a fast algorithm for generating large numbers of dispersals over a spatial grid. It achieves
computational efficiency while still allowing the simulation of rare long-distance dispersals by combin-
ing integration of the density over grid cells with generation of individual samples in the tail of the
distribution, where the tail of the distribution is specified using a given bivariate quantile. We define the
term bivariate quantile similarly to the usual use of the term quantile in univariate statistics, so that the
q-th bivariate quantile defines the contour of equiprobability within which a proportion q of dispersing
individuals will settle. The algorithm can be used with any bivariate PDFs derived from independent
distributions for the distance and location of spread. We show how to derive such bivariate distributions,
where the dispersal direction can be fully or only partially random, and how to locate their bivariate quan-
tiles. We compare the speed of our algorithm to generating individual random samples and the Binomial
approach described above and show when it is faster than its alternatives.

2 DERIVATION OF BIVARIATE PROBABILITY DENSITY FUNCTIONS FOR SIMULATING SPREAD

This section applies transformations between Cartesian and polar coordinates to derive bivariate PDFs
that can be used as dispersal kernels. Without loss of generality, we assume that the origin of dispersal
is the origin of the (x, y) space. If an individual disperses from the origin to a point (x, y) in the plane,
we can determine the radial distance it has travelled r =

√
x2 + y2, and the direction it has travelled

θ = arctan (y/x). Given a bivariate probability density function p(x, y), p(r, θ) is obtained by the
standard change of variables approach (Stirzaker, 1999). Using the inverse transformations x = r cos θ
and y = r sin θ, the determinant of the Jacobian matrix Jr,θ = r, then

p(r, θ) = rp(x, y). (1)

Leptokurtic distributions are better for predicting dispersal (Bullock and Clarke, 2000; Klein et al., 2006;
Kot et al., 1996; Nathan and Muller-Landau, 2000). An example is the fat-tailed Cauchy distribution,
which has been used to simulate dispersal of plant disease (Diggle et al., 2002; Xu and Ridout, 1988) and
invasive species (Pitt et al., 2009). We therefore use the Cauchy distribution to demonstrate the derivation
of isotropic and anisotropic bivariate dispersal kernels and their bivariate quantiles.

2.1 Isotropic Cauchy distribution

The PDF for the bivariate isotropic Cauchy distribution is given by

p (x, y|b) =
b

2π (x2 + y2 + b2)3/2
, (2)

where b is the scale parameter (Achim and Kuruoglu, 2005). Any radial slice of the bivariate isotropic
Cauchy distribution with scale b gives a univariate Cauchy distribution with mean 0 and scale b. Applying
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Figure 1. The Cauchy von Mises product distribution with b = 1, µ = π/4 and κ = 10.

Equation 1 gives

p(r, θ|b) =
rb

2π (x2 + y2 + b2)3/2
. (3)

Because r and θ are assumed independent, p(r, θ) = p(r)p(θ),and p(θ) is uniform over [0, 2π] since the
distribution is isotropic. Thus, the PDF for dispersal distance is given by

p(r|b) =
br

(b2 + r2)3/2
. (4)

The corresponding PDF for dispersal distance derived from a bivariate normal distribution is the Rayleigh
density (Reza, 1994, pp. 214-215).

For dispersal kernels, we require that the cumulative density function (CDF) P (x, y|b) increases with
distance from the origin. It is found by first integrating over θ and then over r as follows:

P (x, y|b) =
∫ 2π

0

∫ r′

0

p (r|b) p (θ) drdθ

∣∣∣∣∣
r′=
√
x2+y2

=
∫ 2π

0

1
2π

∫ √x2+y2

0

p (r|b) dr

=
b√

b2 + x2 + y2
, (5)

Having derived the cumulative density, the q-th bivariate quantile, 0 < q < 1, can be found by locating
all points (x, y) such that P (x, y|b) = q.

2.2 Cauchy von Mises product distribution

We now construct a fat-tailed anisotropic distribution where dispersal distance follows the density p(r|b)
in Equation 4, but the angle of dispersal follows a von Mises distribution. The von Mises distribution
is continuous on [0, 2π], centered on a mean µ and with a second parameter κ that determines how
concentrated the distribution is around the mean. The von Mises PDF is given by

p (θ|µ, κ) =
eκ cos(θ−µ)

2πI0 (κ)
, (6)
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where I0(κ) is the modified Bessel function of order 0. The bivariate PDF is found by taking

p(x, y|b, µ, κ) =
1
r
p(r, θ|b, µ, κ)

=
1
r
p(r|b)p(θ|µ, κ)

=
br
(
b2 + r2

)3/2
r

eκ cos(θ−µ)

2πI0(κ)
. (7)

Then, substituting x = r cos θ and y = r sin θ gives:

p(x, y|b, µ, κ) =
beκ cos(µ−arctan(x/y))

2π (b2 + x2 + y2)3/2 I0(κ)
. (8)

The shape of the density is shown in Figure 1(a). Because the distribution is anisotropic, the bivariate
quantiles are not circular. For the isotropic Cauchy dispersal kernel, the double integral in the calculation
of the cumulative density function could be performed analytically. This is no longer the case when the
direction of dispersal follows a von Mises distribution. However, we can still calculate the value of the
CDF at any point (x, y) and thus determine the locations of the bivariate quantiles for values 0 < q < 1.
The CDF can be formulated using the change of variables approach as

P (x, y|b) =
∫ ∫ r′

0

p (r|b) p (θ|µ, κ) drdθ

∣∣∣∣∣
r′=
√
x2+y2

(9)

We now determine the angles over which to integrate. The point (x, y) corresponds to a contour of
equiprobability such that p(x, y|b, µ, κ) = d. For each r such that 0 < r < r′, the contour of equiprob-
ability will intersect the circle defined by r in two places, corresponding to the minimum and maximum
angles over which we integrate the angular density. We can change the order of integration in Equation 9
so that

P (x, y|b, µ, κ) =
∫ r′

0

∫ θmax

θmin

p (r|b) p (θ|µ, κ) dθdr

∣∣∣∣∣
r′=
√
x2+y2

(10)

where θmin and θmax must be found for each r such that 0 < r < r′.

For a given r, the transformation between Cartesian and polar coordinates provides that

p (r, θ|b, µ, κ)
r

= p (x, y|b, µ, κ) = d. (11)

Since we know d, we can solve for θ to get θmin = µ− α, and θmax = µ+ α, where

α = arccos

[
log

(
2dπ

(
b2 + r2

)3/2
BesselI[0, κ]

b

)
/κ

]
. (12)

Thus, P (x, y|b, µ, κ) can be calculated by substituting θmin and θmax into Equation 10. Because the
integration cannot be performed analytically, numerical integration techniques must be employed to cal-
culate the cumulative density. Because the density is more easily calculated than the cumulative density,
the q−th bivariate quantile can most easily be found by finding the point (x, y) on the quantile with angle
equal to the mean angle µ and the corresponding value of the density p (x, y) can then be used to find all
points with equal density. This equivalently finds the q-th bivariate quantile, but reduces the number of
times that numerical integration need be performed.

The methods presented in this Section have been applied using Mathematica Version 6.0.2. The code is
available from the author.
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(a) Isotropic Cauchy dispersal kernel, with b = 1. (b) Cauchy von Mises product kernel, with b =
1, µ = π/4 and κ = 10.

Figure 2. Illustration of the efficient algorithm for spread simulation with the dispersal origin at the centre
of the centre cell. The 0.9-th quantile is shown. Within it, counts of individuals dispersing to each cell
are shown in greyscale with values increasing from white to black. Beyond the 0.9-th quantile, individual
random samples are generated and sshown as black points.

3 AN ALGORITHM FOR EFFICIENT STOCHASTIC SIMULATION OF SPATIAL SPREAD

The algorithm is as follows. For any given simulation, first
1. Choose a value 0 ≤ q ≤ 1 and find the q-th bivariate quantile.
2. For grid cells fully contained within or intersecting the q-th bivariate quantile, integrate the PDF

over the cell to calculate the probability that an individual will spread to that cell. This need be
done only once for any given q.

Then, each time the simulation requires the dispersal of N individuals,
3. Multiply the probabilities from Step 2 by N to get predicted counts for each cell within the q-th

quantile.
4. Calculate the total number M of individuals spread to cells within the q-th quantile.
5. Generate M −N individual samples from the tail of the distribution.
6. For each grid cell completely outside the q-th bivariate quantile, count the number of samples that

lie in that cell.

Figure 2 illustrates the efficient spread simulation algorithm using two dispersal kernels: the isotropic
Cauchy with b = 1 and the Cauchy von Mises product with b = 1, µ = π/4 and κ = 10.

4 ALGORITHMIC EFFICIENCY

We compare the speed of our efficient algorithm with two approaches that also allow the simulation of
rare events: (1) generation of N random samples from a bivariate dispersal kernel and (2) integration of
the PDF to get the probability Pij of dispersal to each cell in the grid and generation of a random sample
from a Binomial(N , Pij) distribution to simulate the number of individuals dispersing to the cell. We
use two dispersal kernels: an isotropic Cauchy distribution with b = 1 and a Cauchy von Mises product
distribution with b = 1, µ = π/4 and κ = 10; and three different grid sizes: 10 × 10, 100 × 100 and
1000× 1000. Each grid cell has dimension 1× 1. The tests were conducted on an IBM Thinkpad Z60m
with 2MB of RAM.

When using the Binomial approach described in Section 1, the probabilities Pij need only be performed
once for any simulation. As shown in Table 4, the time required for this increases linearly with the number
of cells in the grid. Similarly, for our efficient algorithm, Steps 1 and 2 need only be performed once.
However, the time taken to perform these steps remains constant for different grid sizes.
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Binomial by grid size Efficient algorithm
10× 10 100× 100 1000× 1000

Isotropic Cauchy 1.016 97.359 9732.766 38.36
Cauchy von Mises 12.750 246.968 23674.953 4532.766

Table 1. Comparison of performance times for the“one off” part of a simulation.

Figure 3 shows, for three grid sizes, the times required by each algorithm to simulate dispersal events
of different sizes using an isotropic Cauchy dispersal kernel. The time required to generate individual
random samples increases linearly with the number N of individuals to be dispersed, and is not affected
by the grid size. The same is true for the efficient algorithm. However, the time taken to simulate
dispersal by the Binomial approach increases as the size of the grid increases. While this approach is
faster for small grid sizes and N ≤ 104, it is very slow compared to either generating individual random
samples or the efficient algorithm. For larger N , the normal approximation to the Binomial distribution
can be used and this approach becomes faster than generating individual random samples but it is sill
slower than the efficient algorithm.

Figure 4 shows the times required by each algorithm to simulate dispersal using a Cauchy von Mises
product kernel. The efficient algorithm is faster than generating individual random samples, but is slower
than the Binomial approach for smaller grid sizes; becoming faster when the grid size is 1000×1000. The
efficient algorithm is slower when using the Cauchy von Mises product kernel because random samples
from a von Mises distribution are generated using an accept-reject method (Best and Fisher, 1979). For
dispersal kernels that allow the use of the inverse CDF method for generating random samples, such as
the isotropic Cauchy, our algorithm will be more efficient than the Binomial approach for moderate to
large grid sizes, with speeds comparable to those reported for the isotropic Cauchy dispersal kernel.
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(c) 1000× 1000 grid.

Figure 3. Time taken to simulate a dispersal of N individuals using an Isotropic Cauchy dispersal kernel
over different grid sizes.
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Figure 4. Time taken to simulate a dispersal of N individuals using a Cauchy von Mises dispersal kernel
over different grid sizes.
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5 CONCLUSIONS

We presented a stochastic algorithm for simulating spread over a two-dimensional grid that achieves
computational efficiency while allowing the the simulation of rare events. It is considerably faster than
generating individual random samples from a bivariate dispersal kernel. It also performs better for larger
grid sizes, and when there are larger numbers of individuals to be spread, than an approach that generates
samples from a Binomial distribution for each grid cell using the probability of dispersal to that cell. The
degree of computational efficiency achieved by the algorithm compared to the Binomial approach depends
upon the speed with which random samples can be generated from the tail of the bivariate dispersal kernel
used. Our algorithm is therefore faster using the isotropic Cauchy distribution, for which random samples
can be generated from the tail of the distribution using the inverse CDF method, than for the Cauchy von
Mises distribution, which requires the adoption of an accept-reject method for generating samples from
its tail.
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