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Abstract:

A common approach to learning about species movements is to tag individuals with a GPS transmit-
ter. Here we provide methodology which determines the optimal programming of the times for such a
device, and in doing so allow an assessment of the benefit provided over equidistant sampling sched-
ules. We provide an algorithm (and MATLAB code1) that computes the optimal patch in which to tag
an individual, in addition to the optimal timing and number of samples in order to best estimate three
parameters describing the species-habitat migration rate (assuming a common form of migration). We
use this algorithm to identify some basic conditions of a network that ensure identifiability of model pa-
rameters: at least four distinct inter-patch distances. We subsequently apply our algorithm to a number of
randomly-generated networks, and demonstrate the efficiency gains from optimising various components
of the sampling schedule. Finally, we determine the optimal sampling schedule for a real network: the
spotted owl (Strix occidentalis occidentalis) in Southern California (Lahaye et al., 1994; Shuford and
Gardali (editors), 2008). The comparison of random and real networks demonstrates the improvement in
efficiency as the size and heterogeneity of the underlying network increases.

This is believed to be the first methodology to determine the optimal design for monitoring species move-
ments. Our study also differs from previous optimal design methodology for stochastic models in that
we evaluate the Fisher Information Matrix exactly (to computational precision) rather than adopting an
approximation (Pagendam and Pollett, 2009, 2010b). Furthermore, we provide code to implement EID-
optimality, which more naturally aligns with the motivation of classical D-optimality, but in the situation
of prior uncertainties on parameter values as is common to the problems of interest to us here (Walter and
Pronzato, 1987).
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1 INTRODUCTION

The management of endangered species is facilitated by improved understanding of the demographics of
those species. This also applies to optimal management of zoonotic diseases in their wild hosts. As an
example, in California there have been recommendations for “new demographic monitoring studies...to
broaden the sample and determine whether the various subpopulations [of the California Spotted Owl]
act as a metapopulation” (Shuford and Gardali (editors), 2008). The particular emphasis in this example
is on understanding the migratory behaviour of a spatially-separated species.

As a consequence of habitat fragmentation (generally due to anthropogenic disturbance) many species
occupy geographically separated patches. These species are often at risk of extinction, or of concern with
uncertainty surrounding their ability to persist in their relatively new habitat network. It is precisely this
problem of understanding the migratory behaviour of species occupying metapopulation networks which
we consider herein.

A common approach to learning about species movements is to tag individuals with a GPS transmitter.
Most modern versions of these transmitters allow a choice between different equidistant sampling sched-
ules, with observations taken, say, each day (Lotek Wireless Inc., 2011). The top-of-the-range devices
may permit pre-programming of times (not necessarily equally-spaced in time). Here we provide method-
ology which determines the optimal programming of the times for such a device, and in doing so allow
an assessment of the benefit provided over equidistant sampling schedules.

We provide an algorithm (and MATLAB code) that computes the optimal habitat patch in which to tag
an individual, in addition to the optimal timing and number of samples in order to best estimate three pa-
rameters describing the species-habitat migration rate (assuming a common form of migration). The user
inputs for this algorithm are simply the pairwise distances between habitat patches, characteristics of the
power utilisation of the transmitter, and parameters characterising the prior densities for model parame-
ters. We use this algorithm to investigate a number of simple networks, allowing us to identify some basic
conditions of a network that ensure identifiability of model parameters. We subsequently apply our algo-
rithm to a number of randomly-generated networks, and demonstrate the efficiency gains from optimising
various components of the sampling schedule. Finally, we determine the optimal sampling schedule for
a real network: the spotted owl (Strix occidentalis occidentalis) in Southern California (Lahaye et al.,
1994; Shuford and Gardali (editors), 2008).

This is believed to be the first methodology to determine the optimal design for monitoring species move-
ments. Our study also differs from previous optimal design methodology for stochastic models in that we
evaluate the Fisher Information Matrix (FIM) exactly (to computational precision) rather than adopting
an approximation (Pagendam and Pollett, 2009, 2010b). Furthermore, we provide code which imple-
ments EID-optimality, which more naturally aligns with the motivation of classical D-optimality, but
in the situation of prior uncertainties on parameter values as is common to the problems of interest to us
here (Walter and Pronzato, 1987).

2 MODEL & PROBLEM STATEMENT

The dynamics are assumed to be governed by a continuous-time Markov chain (CTMC), where the state
of the chain at time t is the location of the individual at that time (Norris, 1997; Ross et al., 2008).
Markov chains often provide very good models of systems in ecology as these systems typically consist
of discrete, interacting entities which exhibit randomness. We have a network of N patches with distance
dij between patch i and patch j, ∀i, j ∈ {1, 2, . . . , N}. We assume that an individual migrates between
patches i and j at rate mij = mji = µ exp(−δdθij)1{i↔j}, where µ, δ and θ are species and habitat
specific parameters, which determine the average rate of movement and how movement decays with
distance between patches, and 1{i↔j} is an indicator variable of whether movement between patches
i and j is possible (equal to 1 if possible and 0 otherwise). This form of migration is one commonly
adopted in metapopulation modelling (Gilpin and Diamond, 1976; Day and Possingham, 1995; Inchausti
and Weimerskirch, 2002; Ross and Pollett, 2010).

We wish to estimate φ = (µ, δ, θ), under the constraints on battery power of the transmitter. We assume
that each recording of position uses ps units of power per unit of time of searching, and the battery
power decays exponentially at rate pt per unit time; hence, a sampling schedule t = (t1, t2, . . . , tn)
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(ti > ti−1,∀i) consisting of n samples is constrained via
∑n
i=1 Pi ≤ P where Pi = psαi + (P −∑i−1

j=1 Pj)(1 − exp(−pt(ti − ti−1))), P (= P0) is the initial total power of the battery, and αi is the
number of seconds to fixation of position on observation i.

In addition to the number and timing of the samples, which are constrained by characteristics of battery
utilisation of the GPS transmitter, we assume we have control over the initial location, y0, of the tagged
individual; we may choose from any of the N patches in the network. Hence, in its most general form,
the design space for our problem consists of G = {y0, t1, t2, . . . , tn}.

3 OPTIMAL EXPERIMENTAL DESIGN
Surprisingly little attention has been paid to the optimal observation, or experimental design, of systems
where the underlying system is governed by a Markov chain. There are only a handful of papers in this
area (Cook et al., 2008; Pagendam and Pollett, 2009, 2010a,b), most focussing on the simple death (or
birth) process. As mentioned earlier, Markov chains often provide nice models of biological systems, and
hence the development of methodology appropriate for such systems is beneficial.

We choose to adopt an approach which is very close in spirit to the approach of Pagendam and Pollett
(2010b), following the classical experimental design framework of D-optimality. However, in contrast,
rather than requiring an approximation for the likelihood, and hence an approximate FIM, we evaluate
the FIM exactly (to desired computational tolerances) via EXPOKIT (Sidje, 1998). We also provide code
to implement EID-optimality, which seeks to minimise the expected determinant of the inverse of the
Fisher Information Matrix (FIM). The mathematical details of how the FIM is computed are presented in
the Appendix.

Much of optimal experimental design is built on a fundament of maximum likelihood theory. The like-
lihood of a series of observations y = (y0, y1, y2, . . . , yn) at times t = (t0, t1, t2, . . . , tn) of a time-
homogeneous CTMC, can be exhibited as L = p(y0)

∏n
i=1 pτi(yi|yi−1), where pτi(yi|yi−1) is the con-

ditional probability of transitioning from state yi−1 to yi over the time interval τi = ti − ti−1 and p0(y0)
is the probability of observing the initial state. For an experimental design, where the initial state of the
CTMC is controlled as part of the design, we set p(y0) = 1. Much of maximum likelihood estimation
and optimal design in what follows, revolves around the log-likelihood ` = log(L).

For CTMC’s on a finite state space, the probabilities at the heart of the likelihood are calculated using a
matrix Q of transition rates. For our model, the entries 0 ≤ qij < ∞ are the rates at which individuals
migrate from habitat patch i to j (i 6= j), mij , whilst the diagonal entries qii = −qi, with qi =

∑
j 6=i qij

being the total rate out of state i. A matrix of transition probabilities can be computed as P τ = exp(Qτ),
where τ is the elapsed time between observations and exp(·) is the matrix exponential evaluated herein
using EXPOKIT (Sidje, 1998). The (i, j)th entries of this matrix are the pτi(j|i) present in the likelihood.

D-optimal designs aim to maximise the precision of the maximum likeihood estimator φ̂ = (µ̂, δ̂, θ̂) by
maximising the determinant of the FIM, denoted herein as I. The FIM is at the heart of most optimal
design criteria and for the model at hand, its (i, j)th element can be calculated from the second derivatives
of the log-likelihood function as Iij = −E( ∂2`

∂φi∂φj
), where E(·) is the expected value. Finding the D-

optimal design amounts to solving the problem g? = argmaxg∈G det[I(φ, g)]. Any design, ğ, can be
compared to g? by means of the D-efficiency: De = (det[I(ğ)]/det[I(g?)])1/p. Note, p is the number
of parameters being estimated and De takes values in [0, 1].

However, a common problem for nonlinear models such as ours, is that I is dependent on the unknown
parameter vector φ and therefore so is the optimal design. Such designs are referred to as locally optimal
and suffer from the complication that, in order to find the D-optimal design, one must already know the
values of the parameters being estimated. This conundrum is well documented. Regardless, D-optimal
designs provide a useful benchmark against which to compare other designs and to explore the potential
pitfalls for the practitioner in collecting data. In practice, one can either: (i) opt to use some ‘best guess’
at the parameters, φguess, for the purpose of designing the experiment; or (ii) use a design that is robust
to a range of possible parameter values. One such robust design is the EID-optimal design (Walter and
Pronzato, 1987), which amounts to solving g? = argming∈G

∫
Φ
p(φ) det[I−1(φ, g)]dφ, where p(φ) is a

prior probability density function over the parameter space Φ. This can be thought of as minimising the
expected volume of the confidence ellipsoid for the parameters under the prior.

2263



D.E. Pagendam and J.V. Ross, Optimal GPS tracking for estimating species movements

For finding D-optimal and EID-optimal designs, we use a cross-entropy algorithm, similar to that of
Pagendam and Pollett (2009, 2010b), but where the number of allowable observations is constrained
by the power available in the GPS battery. Typically, such batteries allow location data to be collected
at a relatively large number of times. Furthermore, our investigations have shown that after the first few
observations, the optimal observation times tend to be roughly equidistant in time. For computational effi-
ciency, we therefore consider the design space {w, t1, t2, . . . , ta, ta+τe, ta+2τe, . . . , ta+(n−a)τe, . . . },
where w is the patch in which to tag the individual, a is the number of non-equidistant observation times,
n is the total number of observations and τe is the equidistant spacing of the later observations. Our
observations suggest that in practice, there is typically little loss of experimental efficiency in choosing
a = 4, say. MATLAB m-files to find these optimal observation times are available for download2.

4 RESULTS & BRIEF DISCUSSION
In this section we present our results. We first report guideline requirements for the type of networks
which allow estimation of parameters of our model and in which our methodology will be useful. We
then consider ten random networks and by considering optimal schedules under different constraints
we demonstrate D-efficiencies which should be typically exhibited and also highlight where the main
benefits from optimising GPS scheduling exist. Finally, we apply our methodology to California spotted
owl occupying a 22-patch network, and demonstrate improvement in parameter estimates gained by an
optimal schedule in comparison to sub-optimal schedules.

4.1 Simple Networks: Identifiability
It was found that sufficient heterogeneity must exist in the network in order to estimate parameters with
any reliability, and hence the same requirement exists for the identification of an optimal GPS schedule.
This is particularly the case for the general model we consider, with three parameters requiring estima-
tion; if θ, the exponent of distance in the migration rate, is assumed known (as is often the case, typically
θ = 1/2) then the level of heterogeneity required is reduced, as one might expect. It is hard to pro-
vide specific requirements, but from our investigations we advise the rule-of-thumb that more than four
different inter-patch distances are required as a minimum; the methodology becomes more useful with
increasing number of distinct inter-patch distances, and with increasing heterogeneity in the distances.

4.2 Random Networks: D-efficiency
We generated ten random networks each consisting of ten patches with X and Y co-ordinates each uni-
formly distributed over the interval [0, 150]. To reflect the situation commonly encountered in practice
(for example, as seen in the real example we consider subsequently), we allow a link between two patches
to exist with a probability which decreases with distance between the patches; specifically, migration is
possible between patches i and j with probability pe exp(−dij/s) where pe = 0.925 and s = 1502. This
choice of parameter values means that most links exist in the network. We set other parameters to be
equal to those evaluated and assumed in the spotted owl example to follow: battery power decay rate is
pt = 2.7×10−3 per day, power usage per second of searching is ps = 1.19×10−4, and we assume, con-
servatively, that it takes 120s to fixation on each positioning, µ = 1/10, δ = 1/3 and θ = 1/2 (migration
rate in units days−1) – please see Section 4.3 for further details.

Table 1 presents the results from this investigation. For each of the ten random networks, we first eval-
uated the impact of choice of patch in which to tag the individual; in the second column we report
the average (across designs constrained to tagging the initial individual in each of the possible patches)
D-efficiency, and in the third column the minimum D-efficiency. This demonstrates that significant ef-
ficiency gains can be made by choice of the patch in which to tag the individual. We then considered
the further improvement which could be gained (in addition to the best choice of patch) by also choos-
ing the optimal observation times for a range of a (columns four–eight), over simply adopting the best
of equidistant daily, weekly or monthly observations. Small further gains in efficiency can be found by
choosing the first few observation times, and then adopting an optimal equidistant sampling schedule, as
evidenced by the diminishing performance of the daily, weekly or monthly equidistant designs relative to
the optimal.

2http://www.dan.pagendam.com/Code.html and http://maths.adelaide.edu.au/joshua.ross/Research/Code.html
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Table 1. D-efficiencies, De, from optimising different schedule components on ten random networks.
Network Avg. De (patch) Min. De (patch) a = 0 a = 1 a = 2 a = 3 a = 4

1 0.9590 0.9158 0.9700 0.9554 0.9532 0.9511 0.9496
2 0.9292 0.8287 1.0000 0.9817 0.9765 0.9724 0.9686
3 0.9253 0.8761 1.0000 0.9823 0.9774 0.9732 0.9700
4 0.9848 0.9631 0.9880 0.9850 0.9829 0.9814 0.9801
5 0.9667 0.9399 0.9344 0.9262 0.9247 0.9231 0.9220
6 0.9538 0.9107 0.9630 0.9557 0.9537 0.9522 0.9507
7 0.9530 0.9175 0.9805 0.9686 0.9647 0.9620 0.9591
8 0.9647 0.9349 1.0000 0.9837 0.9806 0.9783 0.9765
9 0.9769 0.9604 1.0000 0.9834 0.9804 0.9785 0.9769
10 0.9314 0.8865 0.9912 0.9816 0.9748 0.9702 0.9664

Avg. 0.9545 0.9133 0.9827 0.9704 0.9669 0.9642 0.9620

4.3 Real Networks: Power Parameterisation & Estimation
GPS Tag Power Parameterisation. Data for the “GPS Bug Tag”TM produced by Lotek Wireless, provides
the number of samples possible at three different equidistant sampling schedules, each with two different
times to fixation (25s and 70s). Using this information, we estimate the battery power decay rate per
second pt and power usage per second of searching, ps, to be pt = 3.08 × 10−8 and ps = 1.19 ×
10−4 (Lotek Wireless Inc., 2011). These estimates were derived by choosing ps and pt to minimise the
maximum absolute error between the power used by each design and the battery power of the GPS tag;
the optimisation was performed using MATLAB’s fminsearchbnd routine. Whilst we believe these
values to be close to the true values, some error will exist; however, the precise values are not overly
important to optimal schedule design.

Spotted Owl in California. As a real example of our methodology, we consider the spotted owl (Strix
occidentalis occidentalis) in Southern California (Lahaye et al., 1994; Shuford and Gardali (editors),
2008). The details of the network can be found in Fig. 1 of (Lahaye et al., 1994), where we evaluated
inter-patch distances between patches where dispersal was indicated as possible using the scale provided
and edge-to-edge distances. The assumed migration rate parameters were motivated by those assumed
in (Lahaye et al., 1994) and the obvious slow rate of migration which warrants investigation of possible
metapopulation structure (Shuford and Gardali (editors), 2008): µ = 1/10, δ = 1/3 and θ = 1/2
(migration rate in units days−1).

As for random networks, we first evaluated the impact of choosing the patch in which to tag the owl. The
average (across all possible choices of patch) D-efficiency was 0.6266, which demonstrated the impor-
tance of the optimal choice of patch. The minimum D-efficiency was 0.2839, which clearly highlights
the potentially catastrophic loss of experimental efficiency one may encounter when failing to consider
the patch in which to tag the owl.

We then considered the further improvement which could be gained (in addition to the best choice of
patch) by also choosing the optimal observation times (a = 4), over simply adopting the best of equidis-
tant daily, weekly or monthly observations. The average D-efficiency was 0.882, which shows that
further, significant improvements in experimental efficiency can be gained by optimising choice of the
first few initial times and equidistant gap.

Parameter Estimates under the Optimal Design. Under the assumption that tagged individuals behave
independently of one another, the optimal design for a single individual applies to all tagged individuals.
Table 2 shows the statistical properties of the maximum likelihood estimator, under the optimal design,
for various numbers of tagged spotted owls in our 22 patch network. The table is populated using data
from 100 simulations of the experiment. In general, the precision in estimating µ is very high for just
a single tagged individual, however, the precision and bias in estimating δ and θ were large for small
numbers of tagged individuals. With roughly 20 tagged owls, estimates of µ and δ were reasonably good,
but θ was still estimated with considerable bias and low precision. Comparison of the median and mean
of the maximum likelihood estimates for θ shows that this estimator exhibits a noticeable right skew. This
highlights that often a large number of individuals will need to be tagged in order to accurately estimate

2265



D.E. Pagendam and J.V. Ross, Optimal GPS tracking for estimating species movements

Table 2. Statistical properties of the maximum likelihood estimator φ̂ = (µ̂, δ̂, θ̂) under the D-optimal
design for the 22 patch network with different numbers of tagged individuals.

Number of Tags Mean(φ̂) Median(φ̂) s.d.(φ̂)
1 (3.40 E-2, 0.765, 16.8) (3.44 E-2, 0.232, 0.917) (6.80 E-3, 1.47, 37.3)
5 (3.33 E-2, 0.297, 8.26) (3.31 E-2, 0.0560, 0.766) (3.11 E-3, 0.407, 15.7)
10 (3.37 E-2, 0.415, 3.43) (3.38 E-2, 0.214, 0.432) (2.34 E-3, 0.589, 8.96)
20 (3.34 E-2, 0.361, 1.01) (3.32 E-2, 0.253, 0.416) (1.51E-3, 0.360, 2.30)

individual parameter values.

Figure 1 shows the gain in experimental efficiency when using the optimal observation times over an
arbitrary weekly observation schedule. Using 100 simulations of 20 tagged individuals migrating between
the patches of the 22 patch metapopulation, we estimated the three model parameters under both designs.
Our figure plots the estimated migration functions obtained from these 100 simulations (solid grey) along
with the true dispersal function (dashed red) as a function of distance. We see that, in general, the dispersal
function is estimated with much greater accuracy and precision under our optimal design. Many more
of the estimated functions under the weekly observation scheme seem to result in a highly exaggerated,
plateau-like function.

0 5 10 15 20

0.
00

0.
03

0.
06

D−Optimal

Distance

M
ig

ra
tio

n 
R

at
e

0 5 10 15 20

0.
00

0.
03

0.
06

Suboptimal

Distance

M
ig

ra
tio

n 
R

at
e

Figure 1. Estimated migration functions from 100 simulations (solid grey) along with the true dispersal
function (dashed red) as a function of distance for (left) D-optimal design and (right) weekly suboptimal
design.
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APPENDIX
Let Q be the matrix of transition rates as described in Section 3. We compute the second derivates
of the likelihood with respect to the parameters, following an approach adopted earlier for extended
Poisson process models (Podlich et al., 1999), and then evaluate the transition probabilities using
EXPOKIT (Sidje, 1998) in order to compute the expected values, resulting in the entries of I. To
achieve this, begin by constructing the augmented matrix Q∗ below. The vector of observation times
is t = (t1, t2, . . . , tn) and each observation yields a vector yi of length N , consisting of zeros every-
where except the entry corresponding to the location of the organism at ti (entry equals 1). Let y0

denote the initial location of the organism at t = 0. For any time, t, it is then a simple task to calcu-
late (pt,

∂pt
∂µ ,

∂pt
∂δ ,

∂pt
∂θ ,

∂2pt
∂µ2 ,

∂2pt
∂δ2 ,

∂2pt
∂θ2 ,

∂2pt
∂µ∂δ ,

∂2pt
∂θ∂µ ,

∂2pt
∂θ∂δ ) = w? exp(Q∗t), where w? = (y0,01×9N )

is a row vector of length 10N corresponding to the initial conditions. Here, 01×9N is a row vector
of zeros having length 10N . Let Mτ = (IN×N ,0N×9N ) exp(Q∗τ) be a matrix whose ith row is
the vector (pτ (·|i), ∂pτ (·|i)

∂µ , ∂pτ (·|i)
∂δ , ∂pτ (·|i)

∂θ , ∂
2pτ (·|i)
∂µ2 , ∂

2pτ (·|i)
∂δ2 , ∂

2pτ (·|i)
∂θ2 , ∂

2pτ (·|i)
∂µ∂δ , ∂

2pτ (·|i)
∂θ∂µ , ∂

2pτ (·|i)
∂θ∂δ )

where pτ (·|i) denotes the probability distribution of an individual after time τ given that it was last
observed in patch i. Straight-forward manipulation of the log-likelihood presented in Section 3 yields:

Ii,j =
n∑
k=1

E
(
[pτk (yk|yk−1)]

−2 ∂pτk (yk|yk−1)

∂φi

∂pτk (yk|yk−1)

∂φj

)
−

n∑
k=1

E

(
[pτk (yk|yk−1)]

−1 ∂
2pτk (yk|yk−1)

∂φi∂φj

)
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=

n∑
k=1

N∑
x=1

ptk−1(x)

N∑
z=1

[pτk (z|x)]
−1 ∂pτk (z|x)

∂φi

∂pτk (z|x)
∂φj

−
n∑
k=1

N∑
x=1

ptk−1(x)

N∑
z=1

∂2pτk (z|x)
∂φi∂φj

,

where ptk(x) is the xth element of ptk and similarly pτk(z|x) is the zth element of pτk(·|x).

Q∗ =



Q ∂Q
∂µ

∂Q
∂δ

∂Q
∂θ

∂2Q
∂µ2

∂2Q
∂δ2

∂2Q
∂θ2

∂2Q
∂µ∂δ

∂2Q
∂θ∂µ

∂2Q
∂θ∂δ

0 Q 0 0 2 ∂Q
∂µ

0 0 ∂Q
∂δ

∂Q
∂θ

0

0 0 Q 0 0 2 ∂Q
∂δ

0 ∂Q
∂µ

0 ∂Q
∂θ

0 0 0 Q 0 0 2 ∂Q
∂θ

0 ∂Q
∂µ

∂Q
∂δ

0 0 0 0 Q 0 0 0 0 0
0 0 0 0 0 Q 0 0 0 0
0 0 0 0 0 0 Q 0 0 0
0 0 0 0 0 0 0 Q 0 0
0 0 0 0 0 0 0 0 Q 0
0 0 0 0 0 0 0 0 0 Q


.
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