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Abstract: The report departs from conventional time series analysis and investigates the existence of 
long memory (LRD) in the stream of daily visitors, arriving from various sources to New Zealand from 1997 to 
2010, using selected estimators of the Hurst-exponent. The daily arrivals of visitors are treated as a stream of 
"digital signals" with the inherent noise. After minimizing the noise (i.e. the presence of short-term trends, 
periodicities, and cycles) we found the existence of significant long memory embedded in our data of daily 
visitors from all sources and in the aggregate. Strong evidence of embedded “long memory” implies that Joseph 
Effect – that good times beget good times and bad times beget bad – whose existence in the underlying process 
may have interesting implications for tourism policy makers. Our findings suggest evidence of such long term 
memory in tourist arrival data. Further, unless this long memory effect is taken into consideration, any 
traditional statistical analysis based on Gaussian and Poisson assumptions may be overly biased.  
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1. INTRODUCTION 

Some excellent work has been done on patterns of tourist arrivals using methods such as ARCH, GARCH, GJR 
and HAR some of the more recent of which are Chang and McAleer(2009), Divino and McAleer(2009, 2010), 
and Chang, C. L., M. McAleer(2010). All of these involved examining time series, using conventional 
econometric methodologies. Generally all of the methodologies used in these papers have used sophisticated 
statistical tests (along with their associated assumptions) to ensure the efficacy of their conclusions, especially, 
in dealing with embedded long range dependencies. Conventionally, volatility clustering can be examined 
directly using methodolgies mentioned above and LRD can be captured by using such methods as HAR 
proposed by Corsi (2004). This paper proposed an alternative approach to detect long range dependencies 
(LRD) used by digital signal processing discipline. Here a time-series is treated as a stream of signal to be 
analysed directly in an attempt to quantitatively measure relative LRD, if any, of different signal streams. Note 
that here the signal’s LRD behaviour is elicited from the level of signal amplitude and not necessarily from the 
higher statistical moments of the signal.  One common way of quantifying LRD is the Hurst Index or Hurst 
exponent (H) where the presence of LRD is inferred at certain level of H threshold. 

Much has been done in areas of computer science (Pacheco. Roman and Vargas, 2005), economics and finance 
(Taqqu, Teverovsky and Willinger, 1999), and in the physical sciences using various Hurst Index (H) 
estimators. However, it is well known that LRD estimators are themselves unstable and erratic (Karagiannis et 
al, 2006). Further, H cannot be calculated in any definitive or direct way and has to be estimated as a by-product 
of some statistical estimating procedures. Depending on the estimator used, if sufficient care is not taken to 
ameliorate the underlying limitations of each of these estimators, the results can sometimes be mutually 
contradictory and conflicting (Karagiannis, Faloutsos and Reidi, 2002). For deeper methodological issues one 
should consult Beran (1992) or Allan (1996) 

Some of the main problems in estimating the H-index are the presence of short term trends, non-stationarity, 
periodicity and noise. Regardless, it is better to test whether LRD and other anomalies are present in a time 
series before deciding whether normal Gaussian analyses are appropriate rather than just assuming that a time 
series is distributionally Gaussian or Poisson. The statistical properties of a series with LRD can be quite 
different from those of a series that are iid. For instance, the variability properties of sample means of assumed 
iid observations are far from valid in the presence of LRD. In the area of tourism study, as in all study of 
involving non-Gaussian time series, the presence of LRD is of practical significance; the least of which is that 
the presence of undetected or un-ameliorated LRD may pose potentially significant problems in the statistical 
and substantive conclusions derived. Further, the presence of LRD could be interpreted as “long memory” 
whose presence implies “persistence” which gave rise to the what Madelbrot et al (1968) called the “Noah” and 
“Joseph” effects, whose manifestations tend to lead to an analog of higher moments (volatility clustering) 
examined in Chang and McAleer(2009), Divino and McAleer(2009, 2010), and Chang, C. L., M. 
McAleer(2010) 

Theoretically, there are several ways of defining long memory process (“long range dependence” or LRD). An 
intuitively popular definition is couched in terms of the auto-covariance function, ρ(k), such that a long memory 
process is present if in the limit, k→∞: ߩ(݇)݇ିܮ(݇) 
 
where 0 < α< 1and L(x) is a slow varying function. Hence a stationary process Xt is long-range dependent, if there exists a 

real number )1,0(∈a  and a constant c1 > 0 such that 

1]/[)(lim 1 =−

∞→

a

k
kckρ  

Where ρ(k) represents the sample correlation function and k is number of lags . The definition states that the 
autocorrelation function of long memory processes, decay to zero with rate approximately k-a. The parameter 
that characterizes long-range dependence (LRD, “long memory”) is the Hurst exponent (H), where H = 1- α/2. 
Long-memory occurs when ½ < H < 1 (“persistence”) and 0 < H < ½ (“anti-persistent”). Long memory process 
can generate non-periodical cyclical patterns as ones observed by Hurst (1951) for the Nile River, where long 
periods of drought are followed by long periods of plenty. Mandelbrot and Wallis (1968) called this 
phenomenon as the “Joseph” or “Hurst” effect. 
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3. OBJECTIVES AND METHODOLOGY 

One of the main objectives is to assess whether there are pronounced LRD presence in these series, if so, there could be 
profound implications for normal statistical analysis of these series. Further, if LRD is strong (H>>0.5), after eliminating the 
presence of known “contaminants” such as short-term trends, non-stationarity, periodicity and noise, one might infer that 
there is LRD along with all the implications of the manifestations of persistence, self-similarity and the presence of an 
underlying fractal structure. All these are indications of the presence of “heavy tails” in the distributions of the time series 
concerned. Presence of a high H-exponent suggests “persistence” and the existence of the “Joseph Effect” where good years 
beget further good years and bad begets further bad. This could provide important signposts for long term policy making, 
especially in the strategic dimensions of tourism infra-structural development, market development and policy making. 

The following estimators used here are chosen because they are the most common estimators. Their efficacies and 
limitations are well documented. These H estimators are applied to several data series of daily tourist arrivals procured from 
the New Zealand Statistics Department for the period spanning 1 September 1997 through 31 October 2010, totalling close 
5000 data points. These comprise daily arrivals from Australia, China, Japan, UK, USA and the rest of the world. 

3.1 Time Domain Estimators 

Rescaled Range (R/S) Estimator  
The R/S estimator is a statistical estimator of H such that: 

ܧ ൤ܴ()ܵ()൨ =  ு݊ܥ

where ܴ() is the amplitude range over a time window, τ, scaled to the standard deviation, ܵ(),	of the range. Here, ܴ() =max൫ܺ(ݐ, )൯ − min(ܺ(ݐ, ))	݂ݎ݋	1 ≤ 	ݐ ≤ 	 and ܵ() = 	ටଵ

∑ ((ݐ) − 〈〉)ଶ௧ୀଵ 	 where X(ݐ, ) = ∑ (ݑ) − 〈〉௧௨ୀଵ  and 〈〉 = ଵ


∑ (ݐ)௨ୀଵ . The R/S for any given τ is R/S(τ) = ோ()ௌ(),	 and H is the regression slope of log τ against log R/S(τ). 

Absolute moment Estimator (A/M) 
Here, a time series, Xt, is divided into blocks of size m, such that: 

(k)ܺ௠ = ଵ௠∑ ௜ܺ௞௠௜ୀ(௞ିଵ)௠ାଵ  where k = 1, 2,... N/m for a series ௜ܺ ,	i =1, 2,.... ,N and k is the index that labels the block. The 

sum of the absolute values of the series is computed for various m, i.e. 

(௠)ܯ/ܣ = 1ܰ/݉෍หܺ௞(௠) − തܺห,ே/௠
௞ୀଵ  

where തܺ	denotes the original series’ sample mean. Regressing the log of this statistic against the log of m should provide a 
line with a slope of H-1, where H is the Hurst exponent. 

Variance Method Estimator (VM) 
VM exploits a characteristic property of the variance inherent in LRD processes that the variance of the sample mean 
converges to zero slower that the 1/N where N is the sample size. If LRD is present, then we have, for large 
N:ܸܽݎ( തܺே)	ܿܰଶுିଶ , where c > 0 and തܺே is the sample mean. If we divide a time series, Xt, into block size of m, and within 

each block, m, aggregate the sub-series to produce a new sub-series, ܺ(௠) such that (k)ܺ(௠) = ଵ௠∑ ௜ܺ௞௠௜ୀ(௞ିଵ)௠ାଵ  where k = 1, 

2,.... and k is the label index of the block. The sample variance of ܺ(௠), is calculated as 

(݉)ଶݏ = 	 1ቀܰ݉ቁ − 1	෍൫ (ܺ௞)(௠) − തܺ൯ଶே/௠
௞ୀଵ  

Where തܺ denotes the global mean. Regressing log ݏଶ(݉) against log(m) for each m, successively, we should have a line 
with a slope of 2H-2, from which H can be inferred.  

Variance Of Residuals Estimator 
A time series, say, {Xi, i ∈ positive integers}, is divided into blocks m, defined as Ψm= {ଵ௠,ଶ௠,… .௡௠, . . }, a derived new 
series from {Xi} with blocks size m. Each ௜௠ ≝ { (ܺ௜ିଵ)௠ାଵ, (ܺ௜ିଵ)௠ାଶ, … , ௜ܺ௠} represents a block of size m of the original 
series. To every Ψm, the partial sum series ܲ(௜௠) = { ௜ܲ௠(1), ௜ܲ௠(2),… , ௜ܲ௠(݉),… },	where each of ௝ܲ௠(݆) = ∑ ܺ(௜ିଵ)௠ା௝௠௝ିଵ  and ܲ௠ = {ܲ(ଵ௠), ܲ(ଶ௠), … . , ܲ(௜௠), … }, can be computed. Then a least square line is fitted to 
the partial sum series Pm to give a new series ௠ = {ܼଵ௠, ܼଶ௠,… , ܼ௜௠,… } (“the least square series”). The variance of the 
residual is given as: 
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௥ܸ௘௦௠ (݅) = 	 1݉ ෍( ௜ܲ௠(݆) −	ܼ௜)ଶ௠
௝ୀଵ  

If the process is known to be LRD, then the median of the residual series behaves as ݀݁ܯ( ௥ܸ௘௦	௠ )~	݉ଶு	for large m. A log-
log plot of ݀݁ܯ( ௥ܸ௘௦	௠ ) against varying m  should give a straight line with slope 2H, where H is the Hurst exponent. 

3.2 Frequency Domain Estimators 

Periodogram Estimator 
The periodogram may be defined as follow: 

(ݒ)ܵ = ܰߨ12 ቮ෍ܺே
௝ୀଵ (݆)݁௜௝௩ቮଶ 

where v is the frequency and X is a given time series of length N. Given a series of finite variance, the S(v) is an estimator of 
the spectral density of X, then a series with LRD will have a spectral density S(v) proportional to |ݒ|ଵିଶுat the lower 
frequencies close to zero. Hence, a log-log plot of the S(v), also known as the periodogram, against v, frequencies, should 
present a straight line with a slope of 1-2H. The frequencies used to estimate H are best taken at the lowest 10% of the 
spectrum in order to comply with the requirements stated above. 

Local Whittle Estimator 
It was stated in Taqqu and Teverovsky (1997) that the local Whittle estimator is semi-parametric and assumes the existence 
of LRD. :Local Whittle (“LWhittle”) is preferred here because it makes less a priori assumptions that the standard Whittle. 
Since Local Whittle is based on the periodogram stated above, it’s focus is also centred around low frequencies of the 
spectrum. LWhittle differs from the periodogram approach by its adding an extra parameter, M, which is an integer of less 
than N/2, and satisfying (1/M) + (M/N) → 0 as N→∞. Assuming only the functional form of spectral density we have: ݂(ݒ)~ݒ|(ܪ)ܩ|ଵିଶுܽݏ	ݒ	 → 0 
 
The objective is to minimize: 

(ܪ)ܴ = logቌ1ܯ෍ ܵ൫ݒ௝൯ݒ௝ଵିଶுெ
௝ୀଵ ቍ − ܪ2) − 1) ௝ெݒ݃݋෍݈ܯ1

௝ୀଵ  

Please note that unless the series is understood to be ideal, then M should be as small as possible, which is in effect using 
frequencies close to zero to minimize the effect of short range effects on the spectral density. 

Abry-Veitch Estimator 
Generally, the Hurst exponent is derived from a wavelet transform (in in case, Daubechies wavelets) of the time series X = 
(x1, x2, .... xn). Given a series with long memory stochastic process, the variance at level i of the wavelet coefficients,  ݀௫(݅, ݆) 
is given by: 

,݅)൫݀௫ݎܸܽ . . )൯ = 	ଶ2 టܸ(ܪ)(2௝)ଶுାଵ 

where టܸ(ܪ) depends on a particular wavelet chosen and the Hurst exponent. V is defined by ܸ(ܪ) = ׬−	 ట()||ଶு݀ஶିஶߛ  

Taking the log of the variance of wavelet coefficients above we have  ݈ݎܸܽ݃݋൫݀௫(݅, . . )൯ = ܪ2) + 1)݆ +  ܭ
where K is a constant.  

Specifically, a time average μi, of ݀௫(݅. ݆) is computed at a given scale. ௜ = (݊௜)ିଵ ∑ ݀௫ଶ(݅. ݆)௡೔௝ , where ݊௜ is the wavelet 
coefficient number at scale i and n the time series points. The Hurst exponent is estimated from the slope of a linear 
regression model stated as follows: ݈݃݋ଶ൫௜൯ = 	 )	ଶ݃݋݈ 1݊௜෍݀௫ଶ(݅, ݆))௡೔

௝ୀଵ  

where i = 1, 2, ... (݈݃݋ଶ(݊). 
4.0 DATA AND PROCEDURES 
 
4.1 Total Tourist Arrivals from all sources 
A plot of the Total Arrivals from all sources is shown in Figure 1. Total Daily Arrivals: 1-9-1997 to 31-10-2010. The plot is 
typical of tourist arrival patterns and conforms to patterns in other studies (Medeiros C, McAleer M, Slottje D, Ramos V and 
Rey-Maquieira J, 2008), with distinct peaks and troughs of a mix of periodicities, the bane of most LRD estimators. Further, 
the existence of trend and noise do not help matter much either. 
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The Autocorrelation Function plot shown in Figure 2 shows the effects of periodicities. These are indications that caution 
should be exercised where Gaussian assumptions are necessary. For our purpose, we need to rid the series of these 
impediments as much as possible. Karagiannis, et al. 2006 suggests Randomized Buckets for ridding the series of most of 
these impediments. The procedure generally involves taking selected sub-series of a selected time series, randomizing these 
to “control the amount of correlation at different time scales.” The procedure comprises External Randomization, Internal 
Randomization and Two Level Randomization. In this paper we will restrict ourselves to Internal Randomization. 

 

Figure 1. Total Daily Arrivals: 1-9-1997 to 31-10-2010 

 

Figure 2. Autocorrelation Function of Total Daily Arrivals (Raw) 

Briefly, the series is divided into segments (“buckets”), where intra-bucket data elements within the buckets are randomized, 
without the order of each of the contiguous buckets being changed. This has the effect of minimizing any correlations 
between intra-bucket data elements while correlations among the buckets themselves are maintained. If the original series 
contains LRD, then the ACF after this procedure should still manifest a “power-law” structure as the existence of LRD 
should be preserved. 

The Internal Randomizing (“IR”) procedure is applied to the Total Arrival data series and the result can be seen in Figure 3. 
Although the periodicity has been dampened, it is still discernible as is evident in the ACF presented in Figure 4. ACF of total 
Tourist Arrivals After Internal Randomization (Bucket size =100) The IR procedure is now repeated, by increasing the bucket size, 
until all discernible evidence of periodicity or short-term trends disappears. 

 

Figure 3. Total Tourist Arrivals after Internal Randomizing (Bucket size=100) 

 

Figure 4. ACF of total Tourist Arrivals After Internal Randomization (Bucket size =100) 

We found that at bucket size of approximately 300 , Figure 5  manifests with its corresponding ACF in Figure 6. Although 
the ACF here is not parabolic, it does show the characteristic slow attenuation of the function. We seem to have rid the data-
set of most periodicity and short term trends. 

 

Figure 5. Total Tourist Arrival after Internal Randomization (Bucket size = 300) 
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Figure 6. ACF of Total Arrivals Post IR (Bucket size = 300). 

From the “cleansed” dataset, we estimate the Hurst Exponents (”H”) using the selected H estimators derived from two 
publicly available software, namely, SelQos and SELFIS. First, the following time-domain H estimators from the software 
were applied: i.e. Rescaled Range (R/S), Absolute Momentum (A/M), Variance Method (VM), Variance of Residuals (VoR) 
and Modified Allan Variance (MAV). Then, the following frequency domain estimators were respectively applied: i.e. 
Periodogram (PDM), Local Whittle (Lwhittle) and Abry-Veitch Method (AV). Each of these estimators has their own 
strength and weaknesses even after having rid the data series of short term “contaminants”. Further, note that both SelQoS 
and SELFIS implement these estimators differently Examining the outputs from both the SelQoS and SELFIS 
implementations and combining the all the H estimates (i.e. time and frequency domains) we have a Combined Median of 
0.627 and Combined Mean of 0.683. The SELFIS implementation of the estimators was criticized in Pacheco et. al (2005) 
and Pacheco and Torres-Roman (2006) for consistently underestimating the H exponent each estimators under various 
controlled conditions. Hence we prefer SelQoS and used its implementations. 

4.2 Tourist Arrivals from Australia, China, Japan, UK, USA, Rest of the world 
Applying  similar procedures outlined in the last section to various sub-components of the Total Arrivals, between 1/9/1997 
and 30/10/2010, we have the estimated the following H-exponents after attempting to eliminate all signs of short-term trend, 
periodicities and cycles using the appropriate internal randomization bucket size ( i.e. “critical” bucket size). The “critical” 
bucket size is the approximate bucket size used in the IR process when all the short-term trends, periodicities and cycles are 
believed to have been eliminated in the IR process. In this case, all data sets seemed to reach this “critical” level at a bucket 
size of about 300. The transformed set of data is then used to estimate H using the various H-estimators provided by SelQoS. 

The results are summarized in Table Error! Reference source not found.1. 

 

Table 1. A Summary of Time and Frequency Domain Estimates of H-exponents 

5. CONCLUSIONS/IMPLICATIONS 

It can be discerned that arrivals from Australia, China, UK and USA shows very high mean and median H-indices for both 
time and frequency estimators giving a strong indication of LRD and the Joseph effects. Arrivals from Japan and the Rest of 
the World mixed mean and median H-indices, but all still exceeds 0.5, indicating the presence of moderate LRD. 
As is evident from the strengths of all the estimates of H-exponents, one may infer the following from the results presented: 
 
1. In attempting to elicit information from any set of data of this genre, one has to be extremely careful when using statistics 
that rely on Gaussian and Poisson assumptions for the purpose of forecasting even after performing most of the required 
standard tests. Pre-processing of the data set to determine the existence of LRD may be necessary in order to take into 
account the effects of LRD on one’s statistical conclusions. 
 
2. One may infer that Joseph Effect may be in operation if one finds LRD in a reasonably “sanitized” data set, i.e. a data set 
that’s rid of short term trend, cycles and other periodicities. Internal Bucket shuffling is one of the methods of minimizing 
such impediments. Our findings support the existence of LRD hence the Joseph Effect. 
 
3. At the moment although one may infer the existence of Joseph Effect, we are unable to determine the duration of such 
effect. This is subject to ongoing research. 
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