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Abstract 

Stochastic dynamics of commodity prices and valuation of derivative contracts have long been studied in the 
field of financial economics.  In the literature a common approach is to specify a stochastic dynamics of the 
underlying assets and derive from the suggested model valuation formulas of various derivative contracts 
whose payoff depends on the realization of the underlying asset value.  Recently, models with additional 
latent factors and more flexible stochastic process of each factor have been suggested.  Although these 
complex models tend to fit better to the observed data, it is often understated that this modeling approach 
only approximates the true stochastic process of the underlying asset values.  This approximation bias can be 
substantial in magnitude for a storable commodity with significant demand and/or supply seasonality, for 
which equilibrium path of spot and futures prices cannot be expressed in reduced form, as shown by the 
theory of storage. 
   
This study examines conventional term-structure models of commodity prices.  In particular, this study 
quantifies the approximation bias of these conventional models through comparing them with an alternative 
approach of modeling the variance of daily futures returns directly by flexible non-parametric functions so as 
to allow the model to replicate highly non-linear price dynamics of storable commodities.  Empirical 
applications of the models reveal that, for all four commodities (gold, crude oil, natural gas, and corn) 
examined in this study, the volatility of daily futures prices is more complex than the pattern as implied by 
the dynamics stipulated in the conventional term-structure models.  In particular, all four commodities exhibit 
a strong time-to-maturity effect as well as a significant seasonal pattern in both levels and compositions 
(among two factors and idiosyncratic errors) of volatility of daily futures returns.  Conventional term-
structure models draw incorrect portraits of volatility dynamics as well as incorrect correlation among 
concurrently traded contracts with different maturity dates, which lead these models to suggest hedging 
strategies that are considerably less effective than the strategy based on the model of futures returns. 
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1. INTRODUCTION 

Recent increases in the level and volatility of primary commodity prices have created tremendous 
uncertainties for producers, consumers, and other traders of these commodities.  Stochastic dynamics of 
commodity prices and valuation of derivative contracts have long been studied in the field of financial 
economics.  In the literature, a common approach is to specify the stochastic dynamics of the underlying 
asset, usually the spot price of the commodity under investigation, and derive from the suggested model 
valuation formulas of various derivative contracts whose payoff depends on the value of the underlying asset 
realized at contract maturity date (see Hull, 2000).  In a seminal study, Schwartz (1997) suggests a model in 
which the underlying spot price is specified as a linear combination of three stochastic components, 
representing long-term factor, convenience yield factor, and interest rate.   

Recent advancements in this modelling approach have been attained through increasing the number of latent 
factors and/or stipulating flexible stochastic process for each factor.  These flexible models generally fit 
better to the observed price data, yet it is often understated that these models only approximate true stochastic 
dynamics of commodity prices.  In particular, as shown by the theory of storage (Williams and Wright, 1991), 
for a storable commodity with strong seasonality in demand and/or supply, the equilibrium path of spot and 
futures prices exhibit highly non-linear dynamics that cannot be expressed in reduced form.  Stochastic 
processes of the underlying spot price stipulated in models of commodity price dynamics, even recently 
developed complex models, cannot induce a futures price formula that replicates key features of commodity 
futures prices implied by the theory of storage.  Thus, no matter how flexible a model is specified, it is 
intrinsically subject to approximation bias.  This bias may result in inaccurate pricing of derivative contracts, 
lead to hedging strategies that are suboptimal, and erroneously conclude that the existing market is inefficient. 

This study examines the conventional term-structure models of commodity prices through comparing them 
with a model of daily futures returns.  In this alternative model, I follow the same approach as Smith (2005) 
and Suenaga and Smith (2011) and specify factor loadings directly by flexible, non-parametric functions, 
rather than determining them by a small number of parameters characterizing the temporal dynamics of the 
underlying stochastic factors.  These flexible functions allow the model to replicate highly non-linear price 
dynamics of commodities with significant storage costs and strong seasonality in demand and/or supply.  I 
quantify the approximation bias in conventional term-structure models through comparing them with the 
model of daily futures returns.  Empirical applications to four commodities (gold, crude oil, natural gas, and 
corn) illustrate that the conventional term-structure models are subject to misspecification bias of 
considerable size, which can lead to hedging strategies that are less effective than the strategy based on the 
model of futures returns. 

2. COMPARISON OF TERM-STRUCTURE MODELS AND MODELS OF FUTURES RETURNS 

2.1 Term Structure Models of Commodity Prices 

As an example of term-structure model of commodity prices, Schwartz and Smith (2000) consider a two-
factor model in which log of the spot price, St, is a linear combination of the long-run equilibrium price, ξt 
and the short-term deviation from the long-run equilibrium price, χt:
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In (1), the long-term (LT) and short-term (ST) factors follow a Geometric Brownian Motion (GBM) and 
mean-reverting (MR) process, respectively, and two increments to the standard Brownian motion are allowed 
to correlate through the fourth equation.  MR process allows the log of spot price to revert to long-run mean 
for κ > 0.  As argued by Schwartz (1997), the process is appropriate in modeling commodity prices, for 
which demand and supply response force prices, if unusually high or low, to revert to the long-run 
equilibrium level. 

                                                           
1 Schwartz and Smith (2000) show that the model defined in (1) is equivalent to the two-factor model of Schwartz (1997) 
in which two latent factors represent the spot price and convenience yield.   
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Two-factor models similar to (1) have been applied to various commodities, such as metals and energy 
commodities.2  A notable modification on model (1) as considered in previous studies is to allow mean price 
to exhibit seasonal variation in the right-hand side of the first equation in (1) when applying the model to a 
commodity with substantial seasonality in demand or supply. 

To derive the pricing formula of a financial contract, the stochastic process of the underlying spot price in (1) 
is transformed into a process that is martingale under the risk-neutral probability measure: 
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where *dzχ  and *dzξ  are increments of the standard Brownian motion under risk neutral probability measure 

and the two coefficients χλ  and ξλ  are often interpreted as representing the market price of risk associated 

with each stochastic factor.  

The price in period t of the futures contract maturing in period T is obtained as the period t conditional 
expectation of period T spot price.  It is obtained as, for the spot price following the stochastic process (1),  
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organized exchanges, multiple contracts with different maturity dates are traded per each commodity.  To fit 
equation (2) into multiple prices observed on day t with different time-to-maturity (T), an error term, often 
called measurement error, is added to the right-hand side of (2), which makes the values of the stochastic 
factors χ and ξ not identifiable.  The model is put into a state-space form and the parameters are estimated 
usually by a filtering method,  
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where E[ut,T] = 0 and V[ut,T] = σT
2 ∀ t and T.  ωt = {ω1,t, ω2,t}’ is iid bivariate normal with E[ωt] = 0 and 

E[ωtωt’] = H where H is the symmetric matrix with σx
 2 and σξ

2 on the main diagonal and ρσxσξ, off diagonal. 

2.2 Models of Price Return (POTS model) 

Partially overlapping time-series (POTS) model, introduced by Smith (2005), is a latent factor model of daily 
futures price changes.  In this model, daily return of a futures contract is decomposed into the common latent 
factors and an idiosyncratic term.  The model, as applied to the NYMEX energy futures contracts in Suenaga 
and Smith (2011), is expressed in the following form, 

(4) ΔFt,m = θ1(m,d) ε1,t + θ2(m,d) ε2,t + θ3(m,d) ut,m 

where ΔFt,m = Ft,m − Ft−1,m is the daily price change on trade date t of futures contract that matures at m, ε1,t 
and ε2,t are the latent factors that affect all the contracts traded on t, ut,m is the idiosyncratic error that is 
specific to the contract maturing at m, θ1(m,d) and θ2(m,d) are the factor loadings determining the extent that 
the underlying shocks, ε1,t and ε2,t, are reflected into the change in the price of future contract maturing in m, 
and θ3(m,d) determines the standard deviation of the shock specific to the contract maturing in m. 

The three terms, θi(m,d), i = 1, …3, are specified as functions of the contract delivery month (m) and the time 
to delivery of the contract (d = m − t),  

                                                           
2 See Lautier (2005) for a comprehensive review on applications of term-structure models of commodity prices to various 
commodities. 

1769



Suenaga, Misspecification in term structure models of commodity prices: Implications for hedging price risk 
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condition is equivalent to the one used in Schwartz and Smith (2000), which allows the two factors to be 
interpreted as representing the LT and ST factor, respectively. 

2.3 Model Comparison 

A major difference between the conventional term-structure models of commodity prices and the POTS 
model is that the former specifies the dynamics of price level whereas the latter specifies the dynamics of 
price return.  By modeling price return rather than level, the POTS model does not specify seasonal and any 
other deterministic variation of the commodity price that result from demand/supply seasonality and other 
peculiarities of the underlying commodity.  Thus, the model is free from bias in approximating such 
deterministic price variation. 

To compare the two models in further details, take the first difference of the futures price formula in (2), 
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where s = m–t is the time to maturity of the contract, ρ = e−κ, and the physical dynamics of the state variables 
in (3) are used to simplify the expression.  In (6), Δut,T ~ iid N(0, 2σT

2) since Δut,T = ut,T  – ut–1,T. 

Comparison of (6) and (4) reveals three shortcomings of the conventional approaches in modelling term 
structure of commodity prices.  First, the factor loadings are determined by a small number of parameters 
defining the dynamics of the spot price series in the conventional term-structure models.  Specifically, the 
factor loadings are exponentially decreasing in time-to-maturity for the ST factor, whereas they are unity for 
the LT factor.  In contrast, factor loadings for both the LT and ST factors are specified by flexible, non-
parametric functions in (4), which allows the extent that current market shocks are reflected into futures 
prices to exhibit very complex patterns and vary across contracts with different maturity dates.  Second, 
while the variance of measurement error ut,m is allowed to vary across the contracts with different maturity 
date, it is assumed to be constant over the time-to-delivery, s, in conventional term-structure models.  In 
contrast, the variance of idiosyncratic error in (4) is specified as a function of s and this function is allowed to 
vary across contract delivery months.  Third, the innovations to the state variables, ωi,m (i = 1, 2), are assumed 
homoskedastic in the term structure models whereas their conditional variance is specified to follow a 
GARCH process in the POTS model.  These restrictions imposed on the stochastic dynamics of the 
underlying factors, factor loadings, and variance of measurement errors can together result in biased 
estimates of not only underlying factors and measurement errors but also the parameters determining 
seasonal mean price and the market price of risk parameters in conventional term-structure models.   These 
biases are expected to be of considerable size for commodities with significant storage costs and strong 
seasonality in demand/supply, which are to be examined empirically in the subsequent section. 

3. DATA AND ESTIMATION 

3.1 Data and estimation methods 

In this study, I estimate three models.  The first model is the two-factor model of Schwartz and Smith (2002).  
Here, I estimate the subset of the model parameters that appear on the model’s first difference form (6).  First 
differencing eliminates the deterministic variation in mean price level (as specified by f(T)), thus, it 
emphasizes the bias resulting from the restrictive specifications of factor loadings, temporal dynamics of 
factor variances, and variance of measurement errors.  First differencing also makes the model directly 
comparable to the second model I estimate; the POTS model, as defined in (4).  The third model is a 
composite model in which factor loadings are specified as in Schwartz-Smith 2-factor model (hence 
imposing restrictive specification on the stochastic dynamics of the latent factors), whereas the variance of 
measurement errors are specified by a non-parametric function as in the POTS model.  Comparison of this 
model with the POTS model allows us to distinguish the bias in the estimated factor loadings and the bias in 
the estimated dynamics of the latent factors into two sources; the biases resulting from the misspecification of 
their own and those resulting from misspecifying the variance of measurement errors.   
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I estimate the three models for futures prices of the following four commodities with different peculiarities:   

• Crude oil: consumption goods with very weak seasonality in demand and supply, 
• Natural gas: consumption goods with strong seasonality in demand, 
• Corn: consumption goods with strong seasonality in supply, and 
• Gold: investment goods with virtually no seasonality either in demand or supply.  

Data examined in this study are daily settlement prices of futures contracts traded at the NYMEX (crude oil, 
natural gas, and gold) and CBOT (corn) for the period between 1984/1/1 and 2007/12/31 for corn and gold, 
1984/4/1 and 2007/12/31 for crude oil, and 1991/4/1 and 2007/12/31 for natural gas.  Because long-dated 
contracts do not trade actively, price of contracts for more than twelve months to maturity are excluded from 
the analysis.  Excluding these observations leaves 70,800 prices among 307 contracts for crude oil, 52,780 
prices among 223 contracts for natural gas, 43,831 prices among 168 contracts for gold, and 48,762 prices 
among 142 contracts for corn. 

3.2 Estimation Results 

Table 1 summarizes the results from the specification test.  In short, the two factor model of Schwartz and 
Smith (2000) stipulating restrictive structures on the factor loadings is empirically not supported.  Comparing 
between the POTS and composite model, the POTS model is generally preferred to the composite model for 
all commodities.  Only when the SIC is used, the composite model is preferred to the POTS model for crude 
oil which exhibits little or no seasonality in demand and supply.  What is surprising is that the POTS model is 
preferred to the composite model for gold for which the storage cost is not significant and no demand or 
supply seasonality is expected. 

Figures 1 through 3 illustrate the factor loadings, variance of idiosyncratic error, and total variance of natural 
gas prices as implied by the estimates of the three models.  The figures show these results only for natural gas, 
for which the difference across the three models in the estimated factor loadings and variance of idiosyncratic 
errors is most notable.3  In panel (a) of figure 1, the factor loadings in the estimated POTS model indicate two 
notable features.  First, the estimated factor loadings increase as the contract approaches to the maturity date 
for all twelve contracts.  Second, the estimated factor loadings in the last few months of trading are higher for 
the contracts maturing in winter than those in summer.  The estimated factor loadings for the ST factor in 
panel (b) exhibit the same features but in greater magnitude than those observed for the LT factor.  In 
addition, for all twelve contracts, the estimated factor loadings for the ST factor start increasing rapidly in 
May, before which they are virtually zero for all twelve contracts.  This is because the natural gas price tends 
to be high in winter peak demand season and there is no inventory carried over from the end of winter to the 
spring when the price is the lowest.  In other words, the inter-temporal price linkage breaks at the end of 
winter peak demand season.  In panel (c), the variance of idiosyncratic error in the estimated POTS model 
exhibits strong seasonality as well as the time-to-maturity effect.  Unlike the two common factors, the 
idiosyncratic errors are not contemporaneously correlated across concurrently traded contracts.  This 
indicates that high volatility in last one month of trading, particularly for winter contracts, represents the 
markets shocks that are specific to each contact and are of very short-term nature. 

Figure 2 indicates the factor loadings, variance of idiosyncratic error, and total variance of natural gas prices 
as implied by the estimated Schwartz-Smith two-factor model.  The model imposes the LT and ST factors to 
follow Brownian Motion and MR process, respectively, which results in the factor loadings of the LT factor 
to be identical for all twelve contracts and constant over one year of trading horizon whereas those of the ST 
factor to decrease exponentially with the time-to-maturity of the contract at the identical rate for all twelve 
contracts. The model also imposes the variance of the measurement error to be constant over the trading 
horizon while it allows the variance to vary by contract delivery dates.  The figure indicates that, for natural 
gas, the idiosyncratic error dominates in magnitude the two latent factors in determining the variance of the 
daily futures price changes.  Even though the estimated factor loadings depict clear mean-reverting behaviour 
in panel (b), their magnitude even on the last day of trading is marginal relative to the variance of 
idiosyncratic error.  Together with the low factor loadings of the LT factor (resulting from the low variance 
of the LT factor estimated in the model), the model implies that the daily price changes exhibit virtually no 
correlation across concurrently traded contracts with different maturity dates, which will imply virtually no 
opportunity for hedging price risks by taking spread positions.   

Figure 3 indicates the results for the composite model.  Unlike for the Schwartz-Smith two-factor model, the 
estimated variance of idiosyncratic error exhibits strong seasonality and time-to-maturity effects.  The 

                                                           
3 The results obtained for the other three commodities are not presented here but are available from the author upon request.  
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estimated factor loadings exhibit the same pattern as for the Schwartz-Smith two factor model, yet they are 
much greater in magnitude for the composite model than for the Schwartz-Smith model.  The estimated total 
variance indicates strong seasonality and time-to-maturity effects in patterns similar to those revealed by 
POTS model in figure 1.  The results signify the importance of allowing flexible functional forms in 
specifying the variance of idiosyncratic error, even when a researcher estimates parameters in conventional 
term- structure models. 

4. CONCLUSION 

In this study, I compare a conventional two-factor term-structure model of commodity futures prices with an 
alternative approach of modeling the variance of daily futures returns directly by flexible, non-parametric 
functions.  Empirical estimation of the models to four commodities; gold, crude oil, natural gas, and corn, 
reveal that the volatility of daily futures prices exhibits strong time-to-maturity effects as well as significant 
seasonal pattern in its levels and compositions (among two factors and idiosyncratic errors).  These complex 
patterns in the volatility of commodity futures prices cannot be replicated by the conventional two-factor 
Gaussian model, due to the restrictive dynamics stipulated onto the underlying stochastic factors.  The 
composite model performs reasonably well in capturing strong seasonality in the volatility of commodity 
prices.  The result signifies the importance of specifying the variance of idiosyncratic error by flexible 
functional forms; allowing capture of both the time-to-maturity effect and the seasonality in patterns different 
among contracts with different maturity date.  Misspecifying the variance of idiosyncratic error can result in 
very different parameter estimates in the conventional term-structure models, which cautions recent trend of 
allowing more flexible stochastic processes of latent factors while stipulating restrictive structures on the 
variance of idiosyncratic errors.  Incorrect portrait of volatility dynamics as well as correlation among 
concurrently traded contracts with different maturity dates can lead the conventional term-structure models to 
suggest hedging strategies that are less effective than the strategy based on the model of futures returns. 
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APPENDIX – TABLE AND FIGURES 

Table 1.  Model Selection Test 
CL NG GC C

AIC
POTS -697584 -431240 -552934 -405414
Schwarts-Smith -618573 -393533 -510150 -400083
Composite -696753 -423613 -551778 -402995

SIC
POTS -694999 -428738 -551683 -404350
Schwarts-Smith -618427 -393391 -510064 -400004
Composite -695790 -422681 -551282 -402564  
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(a) Factor Loading 1 (c) Standard Deviation of Idiosyncratic Error

(b) Factor Loading 2 (d) Total Variance
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Figure 1.  Estimated factor loadings, variance of idiosyncratic error and total variance for POTS model 

 
(a) Factor Loading 1 (c) Standard Deviation of Idiosyncratic Error

(b) Factor Loading 2 (d) Total Variance
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Figure 2.  Estimated factor loadings, variance of idiosyncratic error and total variance for conventional term-
structure model (Schwartz-Smith, two-factor model) 

 
(a) Factor Loading 1 (c) Standard Deviation of Idiosyncratic Error

(b) Factor Loading 2 (d) Total Variance
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Figure 3.  Estimated factor loadings, variance of idiosyncratic error and total variance for composite model 
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