
An advanced model for the                                          
short-term forecast of wind energy 

S. Mathew a, J. Hazra b, S. A. Husain a, C. Basu b, L. C. DeSilva a,  D. Seetharam b, N. Y. Voo a,                             
S. Kalyanaraman b and Z. Sulaiman a 

a UBD|IBM Centre, University of Brunei Darussalam,  
Jalan Tungku Link, Gadong BE 1410, Brunei Darussalam  

 
b Next Gen Systems & Smarter Planet Solutions Department 

IBM Research – India, Nagawara, Bangalore - 560045, India 
Email: sathyajith.mathew@ubd.edu.bn 

 

Abstract: A novel short-term wind energy forecasting method, which is being developed under the 
University of Brunei Darussalam - International Business Machines (UBD-IBM) renewable energy modeling 
initiative, is described in this paper. The paper starts with a brief review on the existing forecasting methods. 
Prediction models based on the physical (derived from Numerical Weather Prediction models) and Time 
Series approaches are discussed. The prediction errors under these methods are described and the need for a 
reliable forecasting system is emphasized. This is followed by a detailed discussion on the UBD-IBM 
approach. The baseline of the proposed forecasting system is the IBM Deep Thunder. Deep thunder is a 
highly modified version of the Regional Atmospheric Modeling System (RAMS). This high resolution 
Weather forecasting system can predict the local Weather variations on a ‘day ahead’ basis, at high accuracy 
levels. For a given wind farm site, specific Deep Thunder models could be developed and calibrated using 
the surface measured wind data. This enables the Deep Thunder to predict the wind profile at the wind farm 
locations over shorter time scales. Once the wind spectra at the reference height are obtained from the Deep 
Thunder, terrain characteristics of the wind farm site are introduced to the model using the geotropic drag 
law. This will further be extended to the specific turbine location by considering local variations in surface 
roughness, orographic effects etc. The wind farm wake effect is introduced to the model at this stage. 
Velocity deficit experienced by the downstream turbines due to the presence of the upstream ones would be 
modeled. A semi empirical approach, based on the conservation of momentum, would be adopted. With these 
procedures, the wind velocity, ‘actually felt’ by individual turbines in the farm could be predicted. From this 
predicted wind velocity at the hub height, the expected energy yield from individual turbines over a given 
time period is estimated. For this, the probability density of these wind speeds within the ‘look-ahead period’ 
and the power curve of the turbines are combined and integrated over the functional velocity range of the 
wind generator. The total energy expected from the wind farm can be computed by adding the energy yields 
from individual turbines. 

Keywords: Wind Energy, Short-term Forecast, IBM  Deep Thunder, Numerical Weather Prediction,  
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1. INTRODUCTION 

Supplementing the energy base with renewable and sustainable energy resources has become imperative due 
to the present day’s energy crisis and growing environmental concern. With a global installation of 194 GW 
and consistent annual growth rate over 25 percent over the past decade [1], wind is the most important 
renewable energy alternative in the world today. Due to this rapid growth in the wind power sector, the grid 
presence of wind energy has also increased significantly in the recent years. The growth of the wind power 
sector is expected to continue in the coming years as well. For example, projections by the Global Wind 
Energy Council (GWEC) indicate that, by the next 20 years, the cumulative wind power capacity would 
reach between 572 GW and 2,341GW, under various policy scenarios [2]. Thus, under favorable conditions,   
the share of wind energy in the global power generation could reach up to 22 percent, making wind the major 
player in the global energy market, meeting a fifth of the world’s power demand.  

 
One of the critical problems in the large scale integration of the wind generated electricity with the grid is the 
uncertainty in its availability due to the stochastic nature of wind. An estimate on the available wind energy 
over shorter time scales (0-48 hours) is essential for the successful integration of wind power systems with 
the grids, from where it is being dispatched along with the electricity generated from other conventional 
options. Such a forecast is critical for the utilities for ensuring the unit commitment, economizing the 
dispatch, formulating the tariff structures and assessing the dynamic security [3]. Technical and economical 
advantages of such forecasting in a dynamic electricity market is well established [4,5]. Though several 
attempts have already been made for the short-tem forecast of wind power, the accuracy level of these 
prediction systems is not very impressive [6, 7,8]. In this paper we present the structure of a novel forecasting 
approach which is being developed under the UBD-IBM renewable energy modeling initiative. Some 
preliminary model results are also included.  

2. METHODS FOR SHORT-TERM FORECASTING  

Two different approaches are adopted for forecasting the wind power availability over shorter time periods. 
They are: (1) Physical approach and (2) Statistical time series approach. The physical approach is based on 
the Numerical Weather Prediction (NWP) models. Characteristics of the expected wind profile over a larger 
area containing the wind farm would be generated by the NWPs.  This is further extrapolated to the surface 
wind at the hub height of the turbines by incorporating the local conditions like surface roughness and 
orographic effect at the wind farm location.  Once the surface winds expected over the farm is known, the 
power outputs of the turbines are calculated using the power curve of the wind turbine.  One of such NWP 
models, commonly used for wind power forecast, is the High Resolution Limited Area Model (HiRLAM) 
[3].   

On the other hand, the statistical time series approach is based on the relationship between the historical 
values of meteorological variables and wind power production. The relationship thus developed could also be 
regularly modified with meteorological forecasts and power measurements during the online operation of the 
prediction system. Apart from different linear and non-linear statistical models, artificial-intelligence-based 
black-box models like Neural-Networks (NNs) [9,10] and Support Vector Machines (SVM) [11] are also 
being used for time series based wind power prediction.  

The major problem with both these short term wind power forecasting methods is the low accuracy level. The 
accuracy depends on several factors like the model characteristics, prediction length and local wind farm 
conditions. For example, a wide variation (10-45 percent) in the normalized absolute average prediction error 
is reported under certain studies [6].  

3. THE UBD-IBM APPROACH 

Based on the previous investigations, an advanced short term wind power forecast model is being proposed 
under the UBD-IBM renewable energy modeling programme. Salient features of the proposed approach are:  
• Higher resolution  NWP model for defining the wind profile 
• Improved wake model for characterizing  the wake effect within the wind farm 
• Using  direction dependant roughness and orographic models 
• Improved energy model which incorporates the variations in wind velocity within the forecasting period 

using statistical distributions  
• Power curve based on wind farm measurement instead of using the theoretical power curve provided by 

the turbine manufacturers 
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Figure 1. The UBD-IBM short term wind energy forecast method 

Schematic representation of the UBD-IBM short term wind energy forecast model is shown in Fig. 1. The 
baseline of the proposed forecasting system is the IBM Deep Thunder. This high resolution Weather 
forecasting system can predict the local Weather variations on a ‘day ahead’ basis, at high accuracy levels. 
For a given wind farm site, specific Deep Thunder models could be developed and calibrated using the 
surface measured wind data. This enables the Deep Thunder to predict the wind profile at the wind farm 
locations over shorter time scales.  

Once the wind spectra at the reference height are obtained from the Deep Thunder, terrain characteristics of 
the wind farm site are introduced to the model using the geotropic drag law. This will further be extended to 
the specific turbine location by considering local variations in surface roughness, orographic effects etc. The 
wind farm wake effect would be introduced to the model at this stage. Velocity deficit experienced by the 
downstream turbines due to the presence of the upstream ones would be modeled. A semi empirical 
approach, based on the conservation of momentum, would be adopted.  

With these procedures, the wind velocity, ‘actually felt’ by individual turbines in the farm could be predicted. 
From this predicted wind velocity at the hub height, the expected energy yield from individual turbines over a 
given time period is estimated. For this, the probability density of these wind speeds within the ‘look-ahead 
period’ and the power curve of the turbines are combined and integrated over the functional velocity range of 
the wind generator. The total energy expected from the wind farm can be computed by adding the energy 
yields from individual turbines. 

The project is under progress and some of the preliminary results are presented in the following sections.  
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Figure 2.  Deep Thunder architecture 

 

4. THE DEEP THUNDER 

The architectural features of Deep Thunder are shown in Fig. 2. Deep Thunder is a service that provides 
local, high-resolution weather predictions customized to business applications for weather-sensitive 
operations up to a day ahead of time.  In particular, the goal is to provide weather forecasts at a level of 
precision and fast enough to address specific business problems. Deep Thunder produces forecasts that 
provide detailed four-dimensional information about temperature, winds, precipitation, etc. from the surface 
of the earth to an altitude of about 15 km. The focus of DT is on high-performance computing, visualization, 
and automation while designing, evaluating and optimizing an integrated system that includes receiving and 
processing data, modeling, and post-processing analysis and dissemination.  Rapid computation is 
insufficient if the results cannot be easily and quickly utilized.  Thus, a variety of fixed and highly interactive 
flexible visualizations focused on the applications have also been implemented to enable timely use and 
assessment of the model forecasts. The model configuration includes full bulk cloud microphysics (e.g., 
liquid and ice) for three nests to enable explicit weather prediction.  Each nest employs specific time step 
(e.g. 48, 12 and 3 seconds) to ensure computational stability and to also accommodate strong vertical motions 
that can occur during modeling of severe convection. Each nest employs the same vertical grid using 31 
stretched levels with the lowest level at 48 m above the ground, a minimum vertical grid spacing of 100 m, a 
stretch factor of 1.12 and a maximum grid spacing of 1000 m. The data for both boundary and initial 
conditions for each model execution is derived from several sources like Numerical Weather Prediction, 
satellite image, etc. The static and dynamic data are processed via an isentropic analysis package to generate 
three-dimensional data on the model nested grids for direct utilization. 

DT consists of 4 modules i.e. data collection, pre-processing, processing and post-processing as shown in 
Fig. 2. Each module is described below.  

4.1 Data 

The NOAAport system provides a number of different data sources as disseminated by the NWS.  These 
include in site and remotely sensed observations for model boundary and initial conditions. The various files 
transmitted via NOAAport are converted into conventional files in their native format and used for 
preprocessing.  
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4.2 Pre-Processing 

The pre-processing consists of two parts. The first is essentially a parsing of the data received via NOAAport 
into usable formats whereas the second part consists of analysis and visualization. Specialized processing and 
analysis has been implemented to assure quality control and appropriate utilization of these data in the 
module pre-processing. 
 
4.3 Processing 

To enable timely execution of the forecast modules, which is required for operations, the simulation is 
parallelized on a high-performance computing system. For this effort, an IBM RS/6000 Scalable Power 
Parallel (SP) and an IBM pSeries Cluster 1600 are employed. 
 
4.4 Post-Processing 

Post-processing essentially operates on the raw model output. There are several aspects of post-processing, 
the most important of which is visualization. Since large volumes of data are produced, which are used for a 
number of applications, the parallel computing system is used for post-processing. 
 

5. MODELING THE WIND FARM WAKES 

When the wind stream interacts with a turbine, the flow is disturbed due to the rotation of the blades and a 
wake is left behind. As the flow proceeds downstream, these wakes get diluted due to spreading and the flow 
would regain the free stream conditions after a certain distance.   In a wind farm, where a number of turbines 
are clustered, the wind speed experienced by a downstream turbine will be lesser than that received by the 
upstream turbine due to this wake effect.  Hence, the local wind velocity, generated by the Deep Thunder, has 
to be corrected for the wake effect for truly representing the wind flow within the wind farm. An improved 
3D wake model is proposed under the project, considering the positions of the turbine, direction of wind flow 
and variations in hub heights of the turbines.  

Based on the simple wake model suggested by Katic et.al. [12], the wind speed at any downstream turbine at 
a distance x from the upstream turbine can be written as: 

2

1 (1 1 )
2T

D
V U C

D Kx

  = − − −  +   
                                                                                                (1) 

where, U is the free wind speed, V is wake wind speed, TC  is the thrust coefficient of the turbine; K is the 

wake decay constant; x is the horizontal distance behind the upstream turbine and D is the rotor diameter of 
the upstream turbine. 

The above formula will be valid only if the wake of the upstream turbine covers the full swept area of the 
downstream turbine. In practice, wake of the upstream turbine may intersect a portion of the swept area of the 
downstream turbine either because of wind direction or because of different hub heights. Let overlapA denotes 

the swept area of the downstream turbine subjected to the wake effect caused by the upstream turbine. Let 

2

4 overlap
overlap

A
f

D

×
=

Π
 be the corresponding fraction of area. Then we have the following expression. 

2

1 (1 1 )
2T overlap

D
V U C f

D Kx

  = − − − ×  +   
                 (2) 

or, 

[ ]1V U d= −                      (3) 

where d is usually referred as depression coefficient, given by: 

2

(1 1 )
2T overlap

D
d C f

D Kx
 = − − × + 

                  (4) 
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Figure. 3 Power curve of the wind turbine (a) and wind velocity distribution (b) 

 

If the upstream turbine is placed at a height of 1h  and the downstream turbine is placed at a height of 2h , then 

the velocity expression can be written as follows: 

2

1
2

2

1 h
h

h

U
V U d

U

  
 = −  
   

                    (5) 

where 1hU and 2hU  are the upwind velocities at height 1h and 2h  respectively. The relationship of wind 

velocity with height can be written as: 

1 1

2 2

h

h

U h

U h

α
 

=  
 

                     (6) 

where α  is the coefficient of surface roughness. Substituting above relation in the velocity expression we 
get: 

2

1
2

2

1h

h
V U d

h

α  
 = −  
   

                    (7) 

In general term, the wake wind speed at turbine n  due to wake of turbine  i  can be written as: 

2

, 1 i
i n n

n

h
V U d

h

α  
 = −  
   

                    (8) 

Due to multiple wakes, wind speed of any downstream turbine n  can be written as: 

( )2

,
1;

n n n i n
i i n

V U U V
= ≠

= − −                     (9) 

 

6. THE ENERGY MODEL 

A typical power curve of a wind turbine is shown in Fig. 3 (a). As we can see, there are two productive 
regions in the curve.  (1) Between the cut-in and rated velocities (VI to VR), where the power increases with 
the wind velocity. Though, theoretically, this increase should be cubic in nature, in practice it can be linear, 
quadratic, cubic and even higher powers and its combinations, depending upon the design of the turbine.  (2) 
From the rated to cut-out wind speed (VR to VO), the power is constant at the rated power PR, irrespective of 
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the change in wind velocity.  The power developed by the turbine P(V)  at any wind velocity V in the first 
region can be given by [13,14] 

n n
I

V R n n
R I

V V
P P

V V

 −
 =
 − 

                   (10) 

where PR is the rated power, VI is the cut-in velocity and VR is the rated velocity. The velocity-power 
proportionality n for any particular turbine can be computed by fitting this expression with the measured 
performance data.  

In order to take care of the variations in the wind velocity within the forecast period, probability distribution of 
wind velocities (Fig. 3 (b)) is introduced in the model. Weibull distribution is considered in the current approach 
as it is well accepted for wind energy calculations [15]. With the above velocity-power relationship and 
probability distribution of wind velocities, the energy contributed by the first productive region (EIR) can be 
computed by 

( )
R

I

V

IR V
V

E T P f V dV=                   (11) 

where T is the forecast time and f(V) is the probability distribution function. For Weibull distribution, probability 
distribution is given by 

( )1

( )

kk V
ck V

f V e
c c

−−
 =  
                 (12)

 

where k and c are the Weibull shape factor and scale factor respectively. Similarly, the energy contributed by 
the second productive region (ERO)  is given by: 

( )
O

R

V

RO R
V

E T P f V dV=                   (13) 

where Vo is the cut-out wind velocity. Considering n turbines in the wind farm, the total energy yield from 
the farm over the forecasting period (EFarm,T) is given by 

( )Farm,T
1

E
j

IR RO
i

E E
=

= +                   (14) 

 

7. CONCLUSIONS 

Preliminary results of the UBD-IBM short-term wind energy forecast modeling project is presented in this 
paper. Existing modeling approaches are briefly outlined and the salient features of the UBD-IBM approach 
are highlighted. Initial formulations of the wake and energy models are also presented. With the high 
resolution weather prediction system like IBM Deep Thunder as its base and incorporation of  advanced 3D 
wake and energy models, the new approach is expected to show better performance in short-term wind 
energy modeling. The work is in the initial stage and the wake and energy models are to be fine tuned and 
validated with the field observations. Further, a platform to accommodate the Deep Thunder output and 
different model algorithms are to be developed.  

 

ACKNOWLEDGMENTS 

The authors acknowledge the support provided by the UBD-IBM research centre for conducting this 
research.   

 

1751



Mathew et al.,  An advanced model for the short-term forecast of wind energy 
 

REFERENCES 

[1] GWEC ( 2011). Global wind report 2010. Global Wind Energy Council, Rue d’Arlon 80 1040 
Brussels, Belgium 

[2] GWEC (2011). Global Wind Energy Outlook 2010, Global Wind Energy Council, Rue d’Arlon 80 
1040 Brussels, Belgium 

[3] Giebel, G.,  Brownsword, R. and  Kariniotakis, G.  (2003). The State-Of-The-Art in Short-Term 
Prediction of Wind Power: A Literature Overview. Project Report, ANEMOS, funded by the 
European Commission, No. ENK5-CT-2002-00665. 

[4] Barthelmie, R.J.,  Murray, F., and  Pryor S.C. (2008). The economic benefit of short-term 
forecasting for wind energy in the UK electricity market. Energy Policy 36 : 1687–1696 

[5] Boqiang, R  and Chuanwen, J (2009). A review on the economic dispatch and risk management 
considering wind power in the power market. Renewable and Sustainable Energy Reviews,13(8), 
2169-2174.  

[6] Maria Grazia, G.,  Ficarella, A. and Tarantino, M (2011). Error analysis of short term wind power 
prediction models. Applied Energy, 88 , 1298–1311.  

[7] Neilson, H, A. (2011). Short term Forecast of Wind Power. In Mathew, S and Philip, G.S. (Eds), 
Advances of Wind Energy Conversion Technology, Springer.  

[8] Focken, U., Lange, M., Onnich, K.M., Waldla, H.P., Beyerb, H. G. and  Luigb, A. (2002). Short-
term prediction of the aggregated power output of wind farmsFa statistical analysis of the reduction 
of the prediction error by spatial smoothing effects. Journal of Wind Engineering and Industrial 
Aerodynamics, 90, 231–246.  

[9] Foley, A.M., Leahy, P.G., Marvuglia, A. and McKeogh, E.J. (2011). Current methods and advances 
in forecasting of wind power generation. Renewable Energy xxx (2011) 1-8 

[10] Lei, M., Shiyan, L., Chuanwen., J, Hongling, L. and Yan, Z. (2009). A review on the forecasting of 
wind speed and generated power. Renewable and Sustainable Energy Reviews 13, 915–920. 

[11] Mohandes, M.A.,  Halawani,  T. O., Rehman, S. and Ahmed A. Hussain (2004). Support vector 
machines for wind speed prediction. Renewable Energy, 29(6),  939-947 

[12] Katic, I.,  Højstrup, J. and Jensen, N.O. (1986). A Simple Model for Cluster Effeciency.  European 
Wind Energy Association Conference and Exhibition, 7-9 October 1986, Rome, Italy.  

[13] Mathew , S.  (2006)  Wind Energy: Fundamentals, Resource Analysis and economics,  first ed.,  
Springer-Verlag, Berlin Heidelberg.  

[14] Mathew , S. and Philip, G.S. (2011).  Advances in Wind Energy Conversion Technology, first ed.,  
Springer-Verlag, Berlin Heidelberg.  

[15] Mathew, S., Pandey, K.P. and Anilkumar V. (2002). Analysis of wind regimes for energy 
estimation. Renewable Energy, Vol. 25 pp 381-399. 

 

1752




