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Abstract 

This paper uses state-space methodology for modelling excess returns, risk and dynamics for the WilderHill 
New Energy Index (NEX). The NEX is a global exchange-traded index for investment in development, 
production and efficiency of renewable energy. It currently lists 98 companies located in 21 countries; the 
total capitalization of the index is about 285 billion US$ (www.nexindex.com). The NEX has experienced a 
substantial growth in the last decade along with the rapid development of the renewable energy sector. 
According to UNEP (2010) estimations, the total amount of (public and private) new investment in 
renewable energy increased from 46 billion US$ in 2004 to about 162 billion US$ in 2009. As a result, 
renewable power generation capacity has increased from about 4% of total power generation to nearly 7% 
between these two dates. Along with this long-run positive trend, the NEX has been able to offer high 
returns. Naturally, these returns have been associated with high risk exposure. For instance, the index 
suffered substantial turbulence between 2007 and the end 2009. This paper is aimed at bringing a deeper 
understanding of the fundamentals that underpin this behaviour. The models is this paper considers various 
fundamentals that have been associated with the NEX in various reports. The analysis is carried with weekly 
data between week 33 in 2001 and week 12 in 2011.   

This study reports work in progress on two different state-space methodologies for assessing the returns and 
risk for the NEX. First, I use a multi-factor state-space model with time-varying coefficients to analyze the 
impact of different fundamental variables on the NEX. This first approached was applied to monthly data in 
Inchauspe, Ripple & Trueck (2011) and presented at the 34th International Conference by the International 
Association for Energy Economics. Expanding the research to weekly data suggests problems in the 
robustness of that model. To remedy this, I propose using a Markov-switching (MS) model that allows for 
regime inference and dynamic analysis. The MS model is written in a mean-adjusted form. This mean, as 
well as the covariance matrix, are allowed to shifts over time. This specification allows for assessing the 
significance of exogenous variables after allowing for shifts in mean NEX returns. As regime shifts in NEX 
excess returns are associated with a positive trend in the NEX levels, the regimes are labelled as “bull” or 
“bear” markets that cannot be explained by fundamentals. 

Earlier literature has proposed using state-space methodology to measure time-varying beta factors in capital 
asset pricing specification (e.g. Bolleshev, Engle and Wooldridge, 1988; Koopman et al., 2008; van Geloven 
and Koopman, 2009; Tsay, 2005, p.577). The first model borrows from this approach to specify a multi-
factor model with time-varying coefficients. In addition, a considerable amount of literature has used 
Markov-switching models to study univariate dynamics of “bull” and “bear” markets in stock market indices 
(Gordon and St-Amour, 2000; Maheu and Curdy, 2000; Lunde & Timmerman, 2004, Edwards et al., 2003; 
Girardin and Liu, 2003; Pagan & Soussonov, 2003). I propose studying the dynamics of possible bull/bear 
markets after relevant exogenous fundamentals are included in the analysis; this approach has also been 
popular in the literature (Chen, 2009; Chang, 2009; Guidolin & Timmermann, 2005; Chauvet & Porter, 
2001). The Markov-switching model in the second part of this paper allows for distinguishing four distinctive 
distributions associated with abnormal returns and variances. The information obtained from this estimation 
is valuable for analysts and investors considering medium-run long positions and provides insights into 
mean-reverting properties of NEX excess returns. 
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1. INTRODUCTION 

The renewable energy sector has accomplished a remarkable progress at global level during the last decade. 
At global level, it has been estimated that private and public investment in renewable energy climbed from 46 
billion US$ in 2004 to 162 billion in 2009 (UNEP, 2010). Despite this positive trend, these estimates also 
suggest a slowdown in the 2009/2010 period.  

In this paper, we study excess returns for the WilderHill New Energy Global Index (NEX), which is subset of 
total investment. The NEX plays an important role in the valuation of renewable energy assets in the global 
market. Its total capitalization is about 285 billion US$ (www.nexindex.com); if we consider that the last 
available estimator for public and private investment in renewable energy is 162 billion US$, it becomes 
clear the NEX plays an important role in the renewable energy sector. UNEP reports on renewable energy 
often dedicate some space to the analysis of the NEX (UNEP, 2010). The NEX has evolved rapidly in the last 
decade, following the long run trend on renewable energy. However, the index behaves significantly different 
to the aggregate estimates in the short and medium run. UNEP’s Global Trends in Sustainable Energy 
Investment report (UNEP, 2010, p.30) and the NEX official webpage (www.nexindex.com) compare the 
evolution of the NEX to other leading indices such as Amex Oil, Nasdaq composite and S&P 500. 

Previous literature investigating the returns of renewable energy indices has focused on the influence of these 
factors. Some studies have focused on the WilderHill Clean Energy Index (ECO). Compared to the NEX, the 
ECO has a smaller capitalization and includes US firms mostly, but is similar in all other aspects; in fact, 
there is a strong degree of correlation between the two. A study using a vector autoregression for returns on 
the ECO, WTI oil prices, PSE (technology) index and US interest rate has suggested that the ECO returns are 
highly influenced by the PSE technology index and that oil prices are not influential (Henriques and 
Sadorsky, 2008). A later article suggested that oil prices contribute to ECO systematic risk (Sadorsky, 2010). 
Another study based on vector autoregressive methodology considers the ECO and different measures of oil 
price –WTI price, Brent price, futures price and an oil index- concluding that the period 2001-2010 is better 
explained if is split in three sub-periods (Chen et al., 2011). The price of the NEX and the ECO have also 
been studied with a vector autoregression including a technology index, the S&P 500 index, oil price and the 
European Emission Trading carbon price (Kumar et al., 2011). The disadvantages of the latter are that the 
European carbon price used in this estimations may not be a good representation of the carbon price in other 
parts of the world, and that the variance decomposition imposes strong assumptions into the model. 
Inchauspe, Ripple & Trueck (2011) have analyzed the influence of some factors in a time-varying multifactor 
setup. To the best of our knowledge, there are no other major contributions studying the WilderHill indices. 
Overall, these studies suggest that technology indices and benchmark stocks have strong influence on the 
renewable energy indices while the influence of oil is weak. It has been suggested that investors may view 
renewable/alternative energy companies as similar to high technology stocks (Henriques and Sadorsky, 
2008). The latter has strong implications for the investor. For instance, investment in oil is sometimes used to 
hedge risk in a diversified portfolio while, on the other hand, high technology stocks tend to yield high 
returns and be very volatile. This observation is one of the motivating ideas for this work.  

This paper studies different aspects of the NEX in two sections. The first part of the paper uses a Kalman-
filter multifactor model which allows all beta factors to become time-varying. State-space models with time-
varying beta factors have been previously used in financial literature (e.g. Bolleshev, Engle and Wooldridge, 
1988; Koopman et al., 2008; van Geloven and Koopman, 2009; Tsay, 2005, p.577). The estimations suggest 
that, with weekly data, the above model brings certain disadvantages (in Inchauspe et al., 2011, monthly data 
was used). This question motivates the second part of the paper. Seeking a model which could fit and explain 
the weekly data, I propose a Markov-switching autoregressive distributed lag model to study the dynamics 
and distributional properties of “bull” and “bear” markets after fundamental and autoregressive components 
are taken into account. The identification of bear/bull markets in univariate analysis with Markov switching 
models has been popular in the literature (Gordon and St-Amour, 2000; Maheu and Curdy, 2000; Lunde & 
Timmerman, 2004, Edwards et al., 2003; Girardin and Liu, 2003; Pagan & Soussonov, 2003), and some 
authors have suggested using exogenous variables (Chen, 2009; Chang, 2009; Guidolin & Timmermann, 
2005; Chauvet & Porter, 2001). The Markov-switching approach also allows for medium run analysis of 
returns and variance, as will be shown later. 

In the dataset, several exogenous variables are considered. First, excess returns on the WTI oil price are 
included; we think that the global oil price may play an important role in the development of renewable 
energy and that its recent spiky behaviour around 2008 may have been influential. Second, we also consider 
the Amex Oil index as an explanatory variable. The Amex Oil index is linked to the exploration, 
development and production of oil; all these activities compete with the renewable energy sector for the same 
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resources. Third, returns for the Nasdaq composite index are considered, following the suggestion of the 
literature that technology stocks may be influential (Henriques and Sadorsy, 2008). The literature cited above 
has also suggested that the interest rate plays an important role in determining NEX returns, and most likely 
in determining the above variables too. To deal with this problem, I use excess returns for all variables. For 
the weekly dataset in this paper, excess returns are calculated by subtracting from the weekly returns the 
weekly equivalent interest rate of a 4-week US treasury bond (this interest rate is interpreted as the 
opportunity cost of a risk-free short-term investment).  The dataset includes weekly observations between the 
first week of December 2001 and the second week of June 2011.  

The balance of this paper is organized as follows. Section 2 is dedicated to the first model. A multifactor 
model with time-varying coefficients is proposed and estimation results are discussed. In Section 3, a 
Markov-switching mean-adjusted autoregressive distributed lag model is estimated. Section 4 concludes the 
paper. 

  

2. A MULTIFACTOR MODEL WITH TIME-VARYING PARAMETERS  

The state-space model proposed in this section has a similar structure to other models used in the literature 
(van Geloven and Koopman, 2009; Tsay,2005, p.577, Koopman et al., 2008; Kim and Nelson, 1999, p.44; 
and Bolerslev, Engle and Wooldridge, 1988), although none of these authors applied this methodology to 
energy company equities. The model can be defined as follows: 

ோ௑.௧ݎ              = ௧ߙ + ௌ௉.௧ݎௌ௉.௧ߚ + ௉ௌா.௧ݎ௉ௌா.௧ߚ + ைூ௅.௧ݎைூ௅.௧ߚ + ,௧~݊݅݀(0ߝ    , ௧ߝ  ఌଶ),                      (1)ߪ

 

The novel aspect of the proposed model is the introduction of time-varying coefficients ߙ, ,ௌ௉ߚ  ைூ௅ߚ ௉ௌா andߚ
that follow a random-walk specification updated through a Kalman-filter.  The evolution of the time-varying 
coefficient is reported in Figure 1 and the out-of-sample forecast is reported in Figure 2. The Amex Oil and 
Nasdaq indices are, overall, strongly significant factors (with p-values of 0.0006 and 0.0000 respectively). 
The constant (i.e. the abnormal returns) and S&P500 excess returns are not significantly different than zero, 
while oil price returns are only weakly significant (p-value: 0.1113). These results have to be taken with 
caution and compared with the dynamic evolution of the time-varying coefficients in Figure 1. The latter 
suggests that the beta factor for the S&P 500 might be significant in some subperiods while the beta 
coefficient for the oil price remains smooth around zero. The beta factor for Amex Oil increases up to 2008 
which is consistent with the NEX market becoming better related to its fundamentals as it grows. As pointed 
earlier, the Amex Oil index list firms linked to geological research, exploration and development of oil; the 
firms that carry these activities compete for human and other type of resources with the renewable energy 
sector. The influence of the Nasdaq index peaks in 2005-6 and decline afterwards. The out-of-sample one-
period ahead forecast in this model is based on the previous period Kalman-filter estimates (without 
smoothing). While this model provides some insightful information, it is also subject to some inconveniences 
in terms of its covariance structure. With time-varying coefficients, one would expect enough flexibility as to 
expected well-distributed residuals with no volatility clusters. However, after running a GARCH(1,1) model 
on the irregular disturbance ߝ௧, I find evidence in favour of a volatility clusters that become accentuated 
between late 2008 until beginnings of 2010 (Figure 3). This finding would partially invalidate the 
identification of risk by simple standardization of the time-varying estimates. Adapting the proposed model 
to include conditional heteroskedasticity is both trivial and difficult, if the two-step procedure is to be 
avoided (conditional heteroskedasticity interferes with the Kalman-filter assumptions). Facing these 
difficulties, I decide not to elaborate any further on this model and employ another state-space model that 
will allow us to overcome the issue while providing new insights.  
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3. A MARKOV-
SWITCHING MEAN-ADJUSTED A HETEROSKEDASTIC 
AUTOREGRESSIVE DISTRIBUTED LAG MODEL 

In this section, I use a MSMH-ADL (Markov-switching mean-adjusted heteroskedastic autoregressive 
distributed lag) model. In an ADL model, the mean-adjusted dependent variable is expressed as a function of 
its own past and current and lagged values of exogenous variables. The mean of the dependent variable is 
allowed to switch according to first-order, homogenous Markov process whose parameters are inferred in an 
expectation maximization algorithm. The variance of the model is also allowed to switch. A switch in NEX 
returns implies a change of trend in the NEX levels. Based on this approach, I identified abnormal bull (bear) 
markets which are defined as periods of generally increasing (decreasing) NEX prices which cannot be 
explained by its past or by exogenous variables. More formally, a MSMH(M)-ADL(k,h) model is written as: [ܴ௧ − [(௧ݏ)ோߤ = ∑ ߶௟[ܴ௧ି௟ − ௞௟ୀ௧ିଵ[(௧ି௟ݏ)ோߤ + ∑ ௤(ܺ௤ߚ − ௑)௛௤ୀ௧ߤ + ,௧~ܰ[0ݑ   , ௧ݑ  (7)                       .[(௧ݏ)ߪ

Where ݏ௧ = ݆ indicates which of the [݆, … ,  regimes prevail in the system at time t. Under this model [ܯ
assumptions, the probability of jumping from a state i to a state j is expressed as ݌௜௝ = Pr[ݏ௧ = ௧ିଵݏ|݆ = ݅] 
and collected in the following transition matrix: 

ܲ = ൮ ଵଵ݌ ଵଶ݌ଶଵ݌ ଶଶ݌ ⋯ ⋯ெଵ݌ ⋮ெଵ݌ ଵெ݌⋮ ଵெ݌ ⋱ ⋮⋯ ெெ൲݌ , ∑ ௜௝݌ = 1ெ௜ୀଵ . 

The value of the elements in this transition matrix is unknown and unobservable. These values and the 
regime classification are inferred in a statistically efficient way in the estimation procedure. Unlike other 
studies (such as Pagan and Sossounov, 2000) we do not impose minimum duration constraints for the 
regimes. Compared to the previous state-space model, the estimation algorithm presents two major 
differences. First, the Kalman filter cannot be used and a special filter and smoother is used instead. Second, 
to overcome conditional definitions in the density function, the estimation is carried via an iterative 
Expectation Maximization (EM) algorithm (a full description of the estimation procedure is given in Kim and 
Nelson, 1999, Ch. 5; the latter is similar to the procedure described in Hamilton,1994, Ch. 221). The 
estimators obtained with this method are asymptotically efficient (see Krolzig, 1997). 

For the 4 regimes in this model, we use the following labels: Regime 1- Highly speculative ‘bear’ market; 
Regime 2- ‘bear’ market; Regime 3- ‘bull’ market; Regime 4- Highly speculative ‘bull’ market. The term 
‘highly speculative’ simple mean that these regimes are expected to yield higher returns and be associated 

                                                           
1 The main difference is that Kim & Nelson (1999) use smoothing techniques that are easier to compute than Hamilton (1989, 1994). 

Figure 1- Evolution of time-varying alpha and beta factors 
(smoothed estimates). 

Figure 3- Implied GARCH(1,1)  
volatility for irregular disturbances. 

Figure 2- One-period-ahead  
out-of-sample forecast. 
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with a higher variance compared to the ‘moderate’ bull and bear market regimes. A priori, our expectations 
about means and volatilities in a M=4 setup are as follows:  (1)ߤ < (2)ߤ < (3)ߤ < ,(1)ߤ ;(4)ߤ (2)ߤ < ,(3)ߤ ;0 (4)ߤ > (1)ߪ ;0 > (4)ߪ ;(2)ߪ >  (8)          .(3)ߪ

The final estimation results are summarized in Table 1. For selecting the structure of the model, likelihood-
ratio (LR) tests, Akaike’s information criterion (AIC) and t-ratios were used. The coefficients associated with 
WTI oil price excess returns were found not statistically different than zero in all the specifications that were 
considered, so it was excluded from the analysis. The Amex Oil and Nasdaq excess returns are highly 
significant, while the S&P 500 excess returns are marginally significant. The autoregressive coefficients for 
NEX were not significant in this model, and with a simple linear autoregression I could verified that they 
were not significant in this alternative model either. The proposed model produces significant improvement 
with respect to its linear counterpart according to the LR test in Table 1. 

 

Estimation Report 
Parameter Estimates 

Parameter Estimate Std. Error t-Ratio 
      Sample period Frequency Number of autoregressive lags Number of Markov-switching regimes Number of parameters Number of parameters in linear model 

W33:2001 W21:2011 Weekly 0 4 24  6       
  ௌ&௉ହ଴଴.௧ߚ  ே஺ௌ஽஺ொ.௧ߚ  ஺ொ௑ைூ௅.௧ିଵߚ  ஺ொ௑ைூ௅.௧ߚ

0.2688 0.1045 0.5877 0.2227 
0.0066 0.0010 0.0009 0.0024 

9.30665.4072 9.4722 2.5380 
Estimation Output vs. Linear Model Log-Likelihood AIC 

Linearity Test LR Chi-Square Statistic  Test p-value 
MSMHAR 1310.93 -5.0567  193.49 0.0016 

Linear 1214.18 -4.7413   (4)ߪ  (3)ߪ (2)ߪ  (1)ߪ  

 0.045787 0.014276 0.006507 0.022599 

 (4)ߤ (3)ߤ (2)ߤ  (1)ߤ 

 -0.0071 -0.0022  0.0003  0.0044 
 

Markovian Dynamics Regime 1: Highly Speculative Bear Market Regime 2: Moderate Bear Market Regime 3: Moderate Bull Market Regime 4: Highly Speculative Bull Market 
 

Number of Obs. 62.7 215.4 89.0 141.9 
 

Ergodic Prob. 0.0964 0.5375 0.1441 0.2220 
 

Av. Duration 7.35 149.93 6.20 6.75 
 
Transition Probability Matrix  
൮     0.8640         5.108(10)ିହ    0.03396   0.9933   0.001093  0.05826  0.00074 0.0009150.00195 0.0061170.1001 0.0005  0.8388 0.088980.03031    0.8518 ൲ 

     

Table 1- Estimation summary: MSMH-ADL model. 

Our results are in line with our expectations from equation (8). Highly-speculative bear (bull) markets 
regimes have higher absolute mean and variance than the moderate bear (bull) markets. Regime 2 (moderate 
bear market) is the most persistent, with an average duration of about 215 weeks. Regime 4 is the most 
recurrent state (it can be accessed from other states more easily than the other regimes). Conditional on the 
regime classification, NEX excess returns are positively correlated to those of Amex, Nasdaq and S&P 500. 
A full picture of the regime classification is provided in Figure 4. Regime 2 dominates between 2003 and 
beginnings of 2005 and from 2009, which is consistent with a mean-reverting property in the data. Abnormal 
moderate- and speculative-bull regimes dominate between 2005 and 2008. The highly-speculative bear 
regime is present during the start of the 2008-9 global financial crisis. It is worth remarking that although the 
exogenous variables were also affected by global financial crisis, what is measured with ߤ(ݏ௧) is the excess 
reaction of the NEX. Furthermore, the residuals show no serial autocorrelation with the coefficients in a 
GARCH(1,1) specification being not significantly different than zero. This model is not subject to the 
volatility cluster limitation encountered earlier. 

Using the information from the transition matrix, we can reconstruct long-term probabilities which should 
converge to the ergodic values തܲ =  ௛→ஶ ܲ௛. This has been done in Figure 5 which suggests that݉݅ܮ
unconditional (i.e. not depending from the initial state) ergodic probabilities are achieved after approximately 
140 weeks. Based on this information, Table 2 provides a tool for investors who consider taking long 
positions over 140 weeks in a portfolio. These results exhibit an asymmetric effect for bear and bull markets. 
Periods with abnormal losses (i.e. either moderate or speculative bear regimes) tend to have a greater 
variance than those periods in which the NEX increases at faster speed than the explanatory factors (i.e. 
either moderate or speculative bear regimes).  

 

 

 

 2002 2003 2004 2005 2006 2007 2008 2009 20100.0
0.5
1.0 Probabilities of highly-speculative bear market Filtered Smoothed 

2002 2003 2004 2005 2006 2007 2008 2009 20100.0
0.5
1.0 Probabilities of moderate bear market

2002 2003 2004 2005 2006 2007 2008 2009 20100.0
0.5
1.0 Probabilities of moderate bull market

1.0 Probabilities of highly-speculative bull market

0 50 100 150 2000.00.20.40.60.81.0Starting from highly-speculative bear market

Probability

Highly-speculative bear market Moderate bull market Moderate bear market Highly-speculative bull market 

0 50 100 150 2000.00.20.40.60.81.0 Starting from moderate bear market

5 50.00.20.40.60.81.0 Starting from moderate bull market

Probability Probability

Probability
Weeks Weeks

WeeksWeeks 0 50 100 150 2000.00.20.40.60.81.0Starting from highly-speculative bull market
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 Regime for  
Abnormal Returns Prob. Expected Return Variance 

 Highly-speculative bear 0.0964 −0.0071 + 0.2688 ෠ܴ஺ொ௑ைூ௅.௧ା௦ + 0.1045 ෠ܴ஺ொ௑ைூ௅.௧ା௦ିଵ + 0.5877 ෠ܴே஺ௌ஽஺ொ.௧ା௦ + 0.2227 ෠ܴௌ&௉ହ଴଴.௧ା௦ 0.045787ݖ,  (0,1)݀݅݊~ݖ

 Moderate bear 0.5375 −0.0022 + 0.2688 ෠ܴ஺ொ௑ைூ௅.௧ା௦ + 0.1045 ෠ܴ஺ொ௑ைூ௅.௧ା௦ିଵ + 0.5877 ෠ܴே஺ௌ஽஺ொ.௧ା௦ + 0.2227 ෠ܴௌ&௉ହ଴଴.௧ା௦  0.014276ݖ,  (0,1)݀݅݊~ݖ

 Moderate bull 0.1441 0.0003 + 0.2688 ෠ܴ஺ொ௑ைூ௅.௧ା௦ + 0.1045 ෠ܴ஺ொ௑ைூ௅.௧ା௦ିଵ + 0.5877 ෠ܴே஺ௌ஽஺ொ.௧ା௦ + 0.2227 ෠ܴௌ&௉ହ଴଴.௧ା௦ 0.006507ݖ,  (0,1)݀݅݊~ݖ

 Highly-speculative bull 0.2220 −0.0044 + 0.2688 ෠ܴ஺ொ௑ைூ௅.௧ା௦ + 0.1045 ෠ܴ஺ொ௑ைூ௅.௧ା௦ିଵ + 0.5877 ෠ܴே஺ௌ஽஺ொ.௧ା௦ + 0.2227 ෠ܴௌ&௉ହ଴଴.௧ା௦ 0.022599ݖ,  (0,1)݀݅݊~ݖ

Table 2- Return/variance analysis for investment over 140 weeks, based on estimation results. 

 

4. DISCUSSION AND CONCLUSIONS 

This paper has contributed to understanding the driving forces of the NEX market and its sources of risks as 
well as to the empirical methodology of return analysis. Our first-model provides insights about the dynamic 
influence of different factors but has the disadvantage of presenting a volatility cluster around 2008. 
Incorporating conditional volatility in a Kalman-filter setup may interfere with the assumptions of the latter, 
hence a different methodology is proposed for dealing with the weekly dataset. I propose a MSMH-ADL 
model which has been able to identify four distinctive means and distributions for NEX excess returns to 
address the following question: what would be the expected returns over a long horizon. This contribution 
disentangles some questions about the determinants of NEX returns and also provides a tool which could be 
useful in various ways. First, the MSMH-ADL model can be used for investment analysis over a horizon 
greater than 140 weeks. Second, if the price of the NEX is identified as undervalued according to the return 
equations in Table 2, the information about of the Markov process (Figures 4 and 5) could help the investor 
make profitable decisions. Third, after allowing for “animal spirits” driving trends, the results provide some 
information on how much is explained by “fundamentals” and how large is the variation that cannot be 
attributed to them. Fourth, these results can be used for portfolio analysis. Many portfolios use commodities 
such as oil to hedge risk as the oil price typically bears a negative correlation to many assets. Thus, a natural 
question that arises in portfolio analysis is whether or not the NEX has characteristics that make it similar to 
oil prices. None of the models considered in this paper have found evidence of excess returns on oil prices 
being a significant contributor to NEX excess returns. Nevertheless, the second model suggests that both 
Amex Oil and Nasdaq returns contribute significantly to NEX returns. An intuitive explanation may be that 
both of these indices list firms that compete for similar inputs. An alternative explanation that has been put 
forward in the literature says that investors tend to see renewable energy firms as similar to high technology 
companies (Henriques and Sadorsky, 2008), perhaps lacking enough information about this newly-developed 
market. For the weekly dataset used in this paper, it is found that the 4-regime Markov switching model 
yields the best and smoother fit to data with no excessive outliers in its standardized residuals.   

ACKNOWLEDGMENTS 

I am grateful to the Centre for Research in Minerals and Energy Economics and Curtin University for their 
support. I acknowledge the contributions by Stefan Trueck and Ronald Ripple to Section 2 of this paper. 

Figure 4- Regime probabilities in MSMH-ADL model. 

Figure 5- Long-term probabilities of being in a
particular state. If an investor considers a long
position for more than 140 weeks, then the initial
state of the system does not matter. 
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