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Abstract:  

The incorporation of expert knowledge in ecological models is gaining prominence in ecology as it provides 
a quick and inexpensive alternative to experimental data and in situations where both data and expert opinion 
have been obtained, expert opinion can help to moderate the experimental data, offering insights into the 
problem that could have otherwise gone unnoticed.  

The use of expert knowledge usually arises in one of two forms: (1) knowledge regarding the model structure 
for understanding the system process; and, (2) prior information concerning the parameters of the model 
which may arise from an elicitation process involving one or more experts. More effort is generally expended 
on the latter than the former, particularly for statistical models where the nature of any data that has been 
collected usually dictates the form of the model. In most cases, however, data collection designs are guided 
by a conceptual model, hence data-dictated statistical models are not necessarily immune from the effects of 
model structure error. Few studies attempt to address both structural and parametric issues in their models. 

Expert opinion influences all stages of model conception, construction and parameterisation. Expert opinion 
is prone to a range of cognitive limitations but the effects of this are not always obvious. Careless use of 
experts during these modelling phases can result in inaccurate predictions stemming from a biased or 
inaccurate perception of what one or more experts believe to be the truth. Issues such as overconfidence, 
representativeness, translation and linguistic uncertainty can lead experts to provide false or misleading 
opinions. We argue that this usually occurs not because the expert intends to provide a false or misleading 
response but because insufficient care has been taken to avoid these issues during the elicitation process. 
Misunderstandings in the question being asked and the interpretation of what is fed back to the expert can 
result in an expert providing an inaccurate view of real world processes. Furthermore, in many situations it is 
not immediately clear whether an expert’s interval around an estimate reflects their knowledge of the 
parameter’s true variability or simply the expert’s ignorance of its value. 

Through three real examples, we investigate the effects of different elicitation procedures and highlight 
issues that lead to a biased response from the expert/s. These examples highlight the need to: 

• conduct the elicitation process in a non-threatening manner so that experts feel comfortable when 
responding to questions;  

• use multiple experts as opposed to a single expert (where possible) to avoid some potential biases 
such as overconfidence; 

• include within the elicitation process a feedback, comparison and reflection stage that allows experts 
to discuss, consider and revise their initial opinions;  

• include a calibration mechanism to ensure the translation of opinions was interpreted correctly in the 
context of the statistical model; 

• where multiple experts are used, ensure pooling is conducted such that variability and ignorance are 
identified and separated; and 

• design the elicitation process to ensure what is elicited can be incorporated into the structure of the 
model used to solve the problem and the impact of prior information in models is examined. 
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1. INTRODUCTION 

The incorporation of expert knowledge in ecological models is gaining prominence in ecology. Recent 
examples by Low-Choy et al. (2009), O’Leary et al. (2008), Griffiths et al. (2007), Kuhnert et al. (2005), 
Martin et al. (2005) and Kynn (2004) show how expert opinion is being incorporated into models to support 
natural resource management decisions. The reason for this rise in popularity is that expert opinion offers a 
relatively inexpensive, quick and efficient alternative to experimental data when constructing and 
parameterising a model. Furthermore, expert opinion can moderate the experimental data, and provide 
posterior estimates that could not have been observed using the data alone, particularly where data is limited.  

Expert information enters model-based decision support systems in two ways: (i) in the development of the 
conceptual model of the problem in hand; and (ii) when the conceptual model is translated into a quantitative 
model, choosing the relationships between variables in the model and parameterising these relationships. 
These are two important steps that are often overlooked when using expert opinion in statistical models. 
Sometimes the structure of the model is considered without much thought to its parameterisation or how 
expert information can be appropriately translated into priors for that model. Alternatively, potential errors in 
the conceptual model are overlooked because the analyst focuses on how to parameterise the statistical 
model, ensuring it conforms well to (for example) the experimental data and statistical assumptions inherent 
in the model itself. Sometimes errors and inconsistencies in the expert’s opinions and interpretations of the 
problem are not identified until the analyst attempts to translate them and incorporate them into the model. 
This usually occurs well after the elicitation process and may not therefore be readily corrected. Despite these 
potential problems few studies concentrate on addressing all of these issues in an elicitation and statistical 
modelling context. 

It is a well documented, but still debated fact that experts are prone to a range of cognitive limitations (Kynn, 
2008; O’Hagan et al. 2006) and therefore the introduction of expert opinion in statistical models needs to be 
carefully considered. Among the many types of limitations (Table 1) overconfidence, whereby the expert 
systematically overestimates the accuracy of his/her beliefs, or rather systematically underestimates the 
uncertainty in a process or its inherent variability, is arguably the most dangerous in decision support 
contexts (Kynn 2008). This can lead to a very informative but inaccurate prior as demonstrated by Kuhnert et 
al. (2009) and Griffiths et al. (2007). Depending on how expert information is captured and incorporated into 
a statistical model, “overconfidence” can have a substantial impact on estimates from the model irrespective 
of how much data is collected and recent research efforts have therefore focused on elicitation processes that 
are specifically designed to minimise this, and other cognitive limitations (O’Hagan et al. 2006, Burgman 
2005). Overconfidence in model structure, however, often takes a back seat in this process. 

In this paper we focus on the elicitation process used to elicit the expert information and how careless use of 
this information can lead to biases in the modelling and interpretation of the results. We stress that experts 
are likely to “get it wrong” if the information is not carefully elicited, interpreted and incorporated into the 
model. Except in very rare instances, this is not because experts deliberately seek to provide false, misleading 
or biased response to the question being asked, but rather because of their inherent cognitive limitations. We 
begin with a discussion of three real examples and show how subjective judgment can alter the interpretation 
of a model if not incorporated carefully. 

Issues Interpretation 
Overconfidence/Conservatism Overestimating the accuracy of his/her beliefs or alternatively 

underestimating the uncertainty in a process. Conservatism relates to the 
process of an expert understating their belief. 

Representativeness Providing opinions that are based on situations that are (wrongly or 
rightly) perceived to be similar. 

Availability Basing a response on most recent available information and not 
considering past events. 

Anchoring and Adjustment The tendency for groups to anchor around (any) initial estimates and 
adjust their final estimate from this value irrespective of the initial 
estimates accuracy 

Misunderstanding of conditional 
probabilities 

Confusion regarding the definition of conditional probability and failure 
to adhere to the axioms of conditional probability. 

Translation Confusion regarding the translation of a response to another scale 
Affect Expert’s emotions entering into the judgment making. 
Hindsight Bias Expert places too much emphasis on past events and outcomes. 
Law of Small Numbers Expert bases their opinion on small pieces of information and assumes 

that this extrapolates to the population. 
Linguistic Uncertainty Misunderstanding the question and/or applying different interpretations to 

the same term. 
Table 1. A summary of some of the key heuristics, judgments or mental operations that can result in bias 

when eliciting information from experts.
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2. ELICITATION, ANALYSIS AND COGNITIVE BIAS  

Extensive reviews of elicitation methods are described elsewhere (Kuhnert et al. 2009, Low-Choy et al. 2009, 
Kynn 2008, O’Hagan et al. 2006 & Garthwaite et al. 2005). Of primary importance in these reviews is the 
potential bias in an elicited response and how careless use of expert information can impact a model. There is 
a large body of literature on the cognitive limitations of experts mainly within the psychology literature. 
There have been relatively few reviews on this subject in the specific context of elicitation for statistical 
models (see however, Kynn 2008). Here we focus on illustrating the effect of some of the cognitive 
limitations presented in Table 1 using 3 case studies and provide advice on overcoming these issues. 

2.1 Eliciting the probability of capture: overconfidence and hindsight bias 

The Problem: Estimating the abundance of pelagic fish (e.g. tunas and mackerels) is a challenging task 
because they are fast swimming visual pursuit predators that feed at many different trophic levels. Standard 
methods such as trawling are not appropriate for surveying fish of this type. Methods which use a passive 
form of capture through gillnets for example are more appropriate. However gillnets are highly selective and 
depend on the mesh size for trapping fish by their gills in the net. The effective area fished by the net is also 
unknown and as a result, the catch cannot be expressed as a density.  

To solve this problem we needed to incorporate net length, soak time (length of time the net was set in the 
water), fish swim speed and net selectivity to estimate 
abundance. Using 208 gillnet sets and making some 
geometric assumptions about the potential domain of 
interaction (an area that fish can swim in to have any 
chance of reaching the net) we were able to construct a 
statistical model to estimate the number of fish per unit 
area. See Griffiths et al. (2007) for specific details 
relating to the model. In constructing this model, two 
priors needed to be incorporated. The first was a prior 
for the swimming speed of fish which was based on 
previously published studies. The second and most 
controversial was a prior representing net selectivity 
which needed to be elicited. 

The Elicitation Process: An expert fish biologist was 
engaged to provide information about the population 
abundance density, )(lφ for different pelagic fish in an 

attempt to estimate the probability of capture, pc. As 
outlined in Griffiths et al. (2007), the probability of 
capture given the fork length1, can be expressed as 

)(/)|()|Pr( lclfcplc φ×= where )|( clf represents the 

density of observed fork lengths from captured fish. If we make an assumption that 1)|Pr( =lc when the 

ratio of the density of observed fish size and that in the population is at a maximum, we can rearrange to form 

an expression for the probability of capture: )|
~

(/)
~

( clflcp φ= . The expert fish biologist was asked to 

provide an estimate for the mean and standard deviation for )|
~

( clf  (dashed line) and )
~

(lφ  (solid line) for 

longtail tuna, which are both assumed to be normally distributed (Figure 1). With these elicited moments, we 
were able to construct a selectivity function and provide an estimate for the probability of capture, pc. 

Cognitive Limitations and Impacts: The information provided by the expert (Figure 1) highlighted some 
classic cognitive limitations. This is indicated by the dotted line in the figure that is superimposed over the 
solid line. This density represents the fish in the population that were missed by the expert’s specification of 

)(lφ  and is represented by )(MISSf . The selectivity function shown beneath these density plots confirms 

this inconsistency and shows that only larger fish are captured by gillnets, with smaller fish avoiding the net. 
Overall the probability of capture was estimated as 0.004. Using this result in further calculations would lead 
to an estimate of abundance of 137.9 fish per square kilometer, a very unrealistic and biased estimate. After 
some discussion and feedback of results, it became clear that the expert’s initial estimates were based on a 

                                                           
1 Fork length represents the length from the fork in a fish’s tail to its mouth and is considered a standard way of measuring length. 

Figure 1. Prior information elicited from a fish 
biologist showing the observed fork length 

distribution  (---) of longtail tuna, the population 
of fork lengths (⎯) and the density of missed fish 

(…). [Source: Griffiths et al. (2007)] 
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large number of Taiwanese catch records that the expert was most familiar with. In this example, the expert 
was clearly driven by past events and outcomes (hindsight bias) and exhibited overconfidence due to the fact 
that there was a large volume of Taiwanese data that he based his opinion on. Correcting for this bias resulted 
in a second elicitation, where the feedback resulting from Figure 1 was used to arrive at a revised estimate of 
abundance: 1.81 fish per square kilometer (σµ = 0.499) and pc = 0.271. 

Overcoming Bias and Lessons Learnt: Although it was quite clear that the estimate of abundance for 
longtail tuna was incorrect, having a graphical aid to feed back to the expert in this elicitation exercise played 
an important role in obtaining a more accurate and unbiased estimate for this problem. This example 
illustrates how easy it is for an expert to become confused with the statistical terminology used to elicit the 
priors and highlights the need for detailed explanation of what is to be elicited, the incorporation of graphical 
aids and feedback to circumvent hindsight bias, overconfidence and linguistic uncertainty. Having access to a 
number of experts may have avoided some of these issues and this is always recommended, where possible. 

2.2 Assessment of military working dogs: affect, translation and overconfidence 

The Problem: The Military Working Dog (MWD) program of the Royal Australian Air Force (RAAF) 
breeds 80 German shepherd and Belgian Malinois puppies each year with the aim of developing each pup as 
a MWD or guard dog for Defence Force bases around Australia. At present, the success rate of dogs in this 
program is between 30-40% (Julie Herbert, RAAF, pers. comm.). The program consists of 5 distinct phases, 
one of which is foster care, where the pups are first exposed to a range of different environments before 
commencing their formal military training. It is the overall aim of this project to determine factors across the 
5 phases of development that might increase a dog’s chance of successfully graduating from the program. We 
investigate one of these phases to examine potential bias that may result from how assessors grade each pup. 

The Elicitation Process: Foster care assessments were conducted as part of the program between 30/05/06 
through to the 1/10/08 resulting in multiple assessments performed on 109 dogs. The majority of dogs (79%) 
had either two or three assessments performed during foster care while the remaining 21% of dogs had only 
one assessment recorded. Assessments were conducted using one or two assessors out of a pool of six, each 
having varying levels of experience.  

The assessment itself was based on four separate tasks: (1) recall - ability to gain the dog’s attention and 
have it run to the assessor; (2) retrieve - ability of the dog to retrieve an object e.g. ball, when thrown; (3) 
boldness - behaviour of the 
dog when exposed to 
different environments; and 
(4) bite response - ability of 
the dog to pull on a rag or toy 
and/or its response when 
provoked. Each assessment 
was conducted on a five point 
scale with 5 representing the 
worst and 1 representing the 
best outcome. “Word 
pictures” were used by the 
assessors to aid in the 
assessment of each dog and 
these represented a 
mechanism for keeping 
responses comparable, 
although no formal training 
or calibration is routinely 
performed in this type of assessment. 

Cognitive Limitations and Impacts: To investigate any potential bias that could result from this form of 
subjective assessment, we conducted a simple analysis of the data and compared the ability and consistency 
of each assessor with respect to a dog’s ability to perform each of the 5 tasks described above. The analysis 
consisted of fitting a proportional-odds logistic regression (McCullagh 1980) to each of the response 
variables (recall, retrieve, boldness and bite) with the assessor representing the explanatory variable, x in the 
model to investigate differences in rating abilities and potential biases. The model can be written as 

1.,1,,1,1 =−= == rPrjj
s spjP   where xjjP βθ ′+=)(logit and jP represents the cumulative probability of 

Figure 2. Military working dog characteristics as captured by recall, 
retrieve, boldness and bite assessments summarized by exploratory 

boxplots of the raw scores (left plot) and the predicted probability of 
assigning a high score (or worst assessment) (right plot). 95% confidence 

intervals are indicated by dotted lines. 
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up to the j-th response for the response of interest, jθ  represents the cut points (on the logistic scale) and β 

represents a vector of coefficients for the explanatory vector, x, which describe how the logit of the 
cumulative probability relates to x.  

The results from this analysis are shown in Figure 2 and indicate some variability in assessments. Assessor 
W1 in particular shows a marked difference in assessment across all 4 behaviours tested (Figure 2-left). 
Where the other assessors responded with scores between 2 and 4, this particular assessor consistently scored 
a 1, corresponding to a high assessment for the dogs evaluated. Figure 2 (right) also illustrates this point but 
indicates high uncertainty in the predicted probability of assigning a high score, resulting from having only 
assessed one dog in the program. This pattern was also observed for assessor W2. After some discussion with 
military staff, it was revealed that assessor W1 had been asked to rate the dog he/she fostered, thereby giving 
a very biased and overconfident view of the pup’s performance. This assessor was not involved in regular 
assessments of MWDs during foster care and therefore this assessor’s rating may have also suffered from an 
affect bias due to the close interaction he/she had with the pup as well as translation problems, due to not 
having had any training or calibration in the assessment process. The variability amongst the other assessors 
also hints to translation problems with this part of the program. In addition to highlighting inconsistencies 
amongst the raters, Figure 2 (right plot) also highlights some consistencies which may also form a type of 
bias. Assessors G and H tend to rate dogs similarly. The estimated 95% confidence intervals for both 
assessors also indicate that the variability around their assessments were somewhat consistent. It was 
revealed that both assessors work closely in the foster care program and have been assessing dogs for a 
lengthy period of time. The closeness in their assessments could be due to being well calibrated and trained 
across time but could also be due to other factors and therefore requires further investigation.  

Overcoming Bias and Lessons Learnt: Many of the inconsistencies noted above are not new in the context 
of modelling data, and could be handled using multilevel or random effects models. The observed variability, 
however, clearly impacts the assessment of the pups during foster care. Furthermore, if this information were 
to be incorporated in a global assessment of a dogs ability across the 5 phases of the program it could either 
provide an inaccurate assessment if the inconsistencies are ignored or alternatively, if they are properly 
accommodated, it could lead to an uninformative and useless assessment. This example illustrates the 
potential pitfalls that could be experienced with multiple raters that use a multi-point scale for assessment and 
how easy it is for assessors to interpret and apply terminology and rating scales in an inconsistent fashion. It 
therefore highlights the need for improvements in the rating system used and the level of training supplied to 
ensure consistencies with expert responses. 

2.3 Import risk assessments: linguistic uncertainty, variability and ignorance 

The Problem: Import risk assessments are mandated under several international legal instruments. Their aim 
is to assess the incidence of pests and diseases in the exporting nation, the extent to which these will survive 
during importation, arrive unnoticed in the importing nation, and consequently establish and spread. Further 
details can be found in the published examples of quantitative (Yamamura et al. 2001, Venette and Gould 
2006) and qualitative (USDA, 1997; Kahn et al. 1999) assessments. As with many other natural resource 
problems, there is often very little observational data for many of the steps modelled in the risk assessment, 
and for this reason quantitative assessments are often eschewed in favour of qualitative assessments (Hayes 
2003).  

The Elicitation Process: Figure 3 shows an excerpt from an elicitation exercise designed to improve the 
transparency of a risk assessment for mango seed weevils in mangoes imported from India to Western 
Australia. The elicitation followed a “normative group elicitation” method (O’Hagan 2006) where seven 
experts where asked inter alia to quantify the proportion of orchards in India infested with seed weevils. The 
experts were asked to provide a best guess, an upper bound and a lower bound, together with an estimate of 
how confident they were that the true value lies between their bounds. They were allowed to compare and 
discuss their initial answers (grey lines, left panel, Figure 3) – to minimise the effect of linguistic uncertainty 
- before providing their final response (not discussed), which were translated to 80% confidence intervals 
(black lines, panel a, Figure 3). 

In this example we explored three ways to pool expert’s elicited intervals. The first approach uses linear 
pooling (O’Hagan et al. 2006 and references therein), assuming that the 7 expert intervals are normally 
distributed on the logit scale (blue lines, Fig. 3). The second approach fits a beta distribution to each of the 
intervals prior to linear pooling (green lines, Fig. 3) while the third approach again assumes the intervals are 
normally distributed on the logit scale and uses a Bayesian hierarchical approach to pool the responses 
similar to a meta-analysis (Hedges and Olkin 1985) (red lines, Fig. 3).  

4266



Kuhnert et al., Expert Opinion in Statistical Models  

Cognitive Limitations and Impacts: This example illustrates an important difficulty that can occur when 
experts are uncertain. The group normative theory helps eliminate linguistic uncertainty (e.g. 
misunderstanding the question) so that the elicited intervals can reasonably be assumed to represent 
knowledge uncertainty (ignorance) or variability. The difficulty in this context is that the elicitation and 
subsequent linear pooling does not allow the analyst to separate ignorance from variability. Experts 5 and 7 
may know that the proportion of infested 
orchards in India is highly variable, or they 
may simply be expressing ignorance on 
this particular question. Linear pooling 
methods can include expertise weights to 
discount the beliefs of less knowledgeable 
experts, but is otherwise is unable to 
distinguish these two types of uncertainty. 

The credible intervals of the posterior 
pooled mean allows the analyst to construct 
a probability box (Ferson et al. 2004) 
(dotted red lines, right panel, Fig. 3). 
Theoretically this enables the analyst to 
separate variability and ignorance. Here 
variability is measured via the standard 
deviation of the posterior pooled mean, and 
ignorance via the credible interval. In this 
example, however, the experts were not 
given the opportunity to comment on this 
separation, either during the elicitation or 
subsequent analysis, and this technique 
may not accurately reflect their beliefs.  

Overcoming Bias and Lessons Learnt: 
Group elicitation must be performed 
carefully. Clearly translation and feedback 
is essential to minimise linguistic 
uncertainty within the expert group, but it 
is also important that during the feedback 
phase experts are not overly influenced by 
the initial estimates of others in the room 
(Anchoring). Questions and analysis 
methods that can separate variability from ignorance should also be investigated and ideally explicitly 
incorporated into both the elicitation process and the pooling methodology. 

3. DISCUSSION AND CONCLUSIONS  

We have shown examples where experts’ prior beliefs and their inherent cognitive limitations, have dramatic 
effects on parameter estimates. We argue that instances where the expert “gets it wrong”, are more likely to 
occur  because of the limitation of the elicitation process, and the subsequent pooling of data where there are 
multiple experts, rather than the expert/s intending to provide a false or misleading response. This highlights 
the importance of carefully designing the elicitation process to minimise the effect of linguistic uncertainty 
and thinking carefully about how this information can be incorporated into a statistical model and interpreted 
such that the effect of the expert knowledge (encoded in a prior) on the posterior, for a particular likelihood 
structure is realised.  

In practice, to avoid these issues we recommend where possible: (1) the use of multiple experts in a 
normative setting to avoid overconfidence which is sometimes experienced with one expert (case study 1); 
(2) pooling of expert beliefs with a mechanism for separating variability from ignorance (case studies 2 and 
3); (3) calibration to ensure experts report what they actually mean (case study 3); (4) a feedback and 
comparison process that allows experts to discuss and revise their opinions, and compare the assumptions of 
the analysis method (e.g. pooling) with their beliefs (case studies 1 and 3); (5) a methodology that allows the 
expert to respond in a natural and non-threatening manner about the question being asked (case studies 1-3); 
and, (6) designing the elicitation process around the statistical methods that are subsequently used to analyse 
and pool the information that is elicited (case study 2 and 3) and investigating the impact of this information 

Figure 3. Synthesis of experts’ belief about the proportion of 
mango orchards in India that are infested with mango seed 

weevil. The plot in the left panel shows the 7 expert intervals 
and pooled responses based on 3 different pooling methods: 
linear (blue), beta (green), Bayesian (red). The second panel 
shows the cumulative density function of these methods in 

addition to a probability box. 

4267



Kuhnert et al., Expert Opinion in Statistical Models  

in the model. This latter point is extremely important because no matter how well you have attempted to 
eliminate bias from the elicitation approach, if the statistical model has difficulty incorporating the 
information or approximations need to be devised then the effort that has gone into the elicitation can be in 
vain. If expert opinion is elicited with this care and incorporated in a transparent manner it can become a 
powerful source of information in models that can effectively assist in the decision making process.  
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