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Abstract

Modelling the rainfall-runoff task is a challenging task, especially if flood forecasting in small catchments is
considered. In this context, hydrological models are not yet able to equally well describe the full range of
processes that drive the runoff generation. This holds both for simple concept models and detailed process
models with physically based components. One of the main reasons for this lack of “process fidelity” are the
highly dynamic characteristics of such events. This situation, amongst other reasons, requires that models
have to be adapted to a specific catchment by a parameter vector, i.e. a set of hydrological parameters to
be calibrated. The lack of “process fidelity” can be partly compensated for by adapting various parameter
vectors according to the actual dominant driving forces of the rainfall-runoff processes. A number of approaches
address this way forward. Cullmann et al. (2008) proposes an event specific classification method to enable the
application of an adequate parameter vector to different classes of flood patterns. Along these lines Fenicia et al.
(2007) propose the combination of local models each best describing a specific range of processes and tested it
for distributed physically based models in small catchments describing a specific range of processes.

One of the keys to successful modelling of rainfall-runoff processes in a specific catchment is the calibration
itself. In a classical way this task is formulated as a mathematical optimization problem for a given single
or multi-objective function. The result is a single best performing parameter vector, or a set of equally well
performing parameter combinations. This equifinality and the missing consideration of measurement errors
can lead to over-fitted models, which consequently lack the robustness required for operational purposes. To
overcome this problem a new approach has been developed, the robust parameter estimation algorithm ROPE,
first introduced by Bárdossy and Singh (2008). We further developed this algorithm with advanced depth and
tested it for a distributed physically based model in small catchments with high runoff dynamics at a smaller
time scale (hourly instead of daily modelling time-step).
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INTRODUCTION

This paper presents two new techniques to be applied for flood forecasting in small and fast responding
catchments. Flash floods represent one of the most common and dangerous natural hazards. However, the
menace arising from flash floods worldwide is often not clearly addressed in the media and lacks public awareness.
Flash floods are characteristic for small to medium sized catchments. Usually, they are a consequence of severe
rainstorms. Regarding the total volume, flash floods are often much smaller than inundations. Nonetheless, due
to the immense flow velocities and steep gradients, flash floods pose the most serious threat to human life (see
Cullmann, 2006).

All commonly accepted approaches in flood forecasting, even data-driven ones, make use of a rainfall-runoff
model to simulate the dominant runoff processes within the considered basin. An arbitrary rainfall-runoff
model m with current internal model storage si is a function which takes a vector of meteorological observations
~xi, representing the driving forces, and a model specific parameter vector θ to simulate the actual runoff qi.

qi ← m(~xi, θ, si) (1)

The internal storage is updated as follows:

si+1 ← u(~xi, θ, si) (2)

By the help of θ the model can be adapted to different catchment areas. Additionally parameter and model
uncertainty can be expressed by a set of parameter vectors Θ = {θ1, θ2, ..., θn} whose members describe the
range of uncertainty. A robust estimation of θ is the base of most flood forecasting approaches. Both for simple
concept models and detailed process models with physically based components, one single parameter vector
θ is not capable to describe the full range of processes that drive the runoff generation equally well (Fenicia
et al., 2007). The lack of “process fidelity” can be partly compensated for by adapting various parameter vectors
according to the actual dominant driving forces of the rainfall-runoff processes. Furthermore an estimation
of robust parameters can be improved by a paradigm change in model calibration. The calibration algorithm
ROPE, firstly presented by Bárdossy and Singh (2008) which relies on Monte Carlo methods and the definition
of data depth is one possible method to find robust and reject non-robust parameter vectors.

The remainder of the paper is organized as follows. First an enhanced version of the robust parameter
estimation algorithm ROPE briefly presented together, followed by a short description of the case study-area,
the experimental set-up and the results. This is completed by a discussion and a short outlook on future work.

1. ROBUST PARAMETER ESTIMATION

A new approach to deal with the mentioned problems of model parametrization and calibration is the robust
parameter estimation algorithm (ROPE). The main idea of this approach is a paradigm shift in model calibration
in hydrology. No more is the calibration procedure understood as a pure optimization procedure (according to
a given objective). A geometric search of a set of robust performing parameter vectors Θrobust by the help of
Monte Carlo methods and a definition of data depth has replaced this philosophy. The basic assumption is that
robust parameter vectors are located deep within a set of good performing parameter vectors (see Bárdossy and
Singh, 2008). In this context, depth is related to the definition of data depth, which is used to estimate the degree
of centrality of a point with respect to a set of points within a n-dimensional space. Tukey (1975) introduced
depth functions first to identify the centre of a multivariate dataset. ROPE bases upon the halfspace depth
which can be calculated with respect to arbitrary sets and is one of the most robust depth measures developed.

We implemented and further developed the algorithm in a MATLAB R© framework. Additionally we further
developed the algorithm by addition of further depth measures, e.g. convex-hull peeling depth, L1 depth,
zonoid depth and weighted halfspace depth (see Hugg et al., 2006; Vencálek, 2008). This was done to be able
to apply problem specific depth functions according to the form of the clouds to sample from. The definition of
weighted halfspace depth even enables the sampling from non-convex clouds. A further problem can occur in
the sampling procedure for higher dimensions. With increasing dimension the ratio of the volume of the unit
cube with respect to the unit sphere increases rapidly. This is why the volume of the bounding box around the
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best performing parameter vectors can increase in a way that simple sampling techniques cannot be applied
anymore. We implemented importance sampling successfully to tackle this problem.

Note that not all implemented improvements are used in the studies presented in this paper. For instance
for reasons of comparison with previous results from the study of Bárdossy and Singh (2008) we still use the
halfspace depth exclusively. At the moment our framework is in a steady development process. The framework
and the full bandwidth of its depth functions will be presented and studied in future papers. The implementation
procedure for the (enhanced) ROPE algorithm is as follows:

1. Define a set of model parameters to be calibrated and their feasible range.

2. Draw a set of parameter vectors Θ that are within the hypercube defined by the parameter boundaries. We
consider the latin hypercube sampling for this task to yield a good and uniform coverage of the hypercube
by a small number of samples; if there is a prior distribution for this parameter, this can be used instead.

3. The (hydrological) model is run for each parameter vector θ ∈ Θ and the corresponding model performance
is calculated by a task adequate objective function.

4. A subset Θbest ⊂ Θ of the best performing parameter vectors in Θ is identified, for instance such that
Θbest comprises the best 10% of all parameters in Θ.

5. A set of parameter vectors Θdeep is generated by the help of importance sampling out of the parameter
space defined by Θbest, such that ∀θ ∈ Θdeep : D(θ,Θbest) ≥ l with l ≥ 1 (Figure 1).

6. Set Θ = Θdeep ∩ Θbest and repeat steps 3-6 while the model performance of Θ and Θdeep differ more
than one would expect from the observation errors or the maximum number of iterations is not reached;
otherwise assign Θrobust = Θdeep and terminate the algorithm with result Θrobust.
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Figure 1. Visualization of the clouds of best (blue) deep (red) parameters for an application of ROPE for the flood
event nr. 14 in June 1994; after first (a), second (b) and third iteration (c)

It is worthwhile noting that an arbitrary objective function can be used in step 3. Generally, this opens the
possibility to address specific characteristics of the considered processes and/or catchments. In the context of
flood forecasting additional data can be used to support calibration, e.g. a hydrograph separation to yield a
robust representation of the runoff processes in the catchment.
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2. CASE STUDY-AREA AND DATA

The Rietholzbach catchment is analysed in this section. It has a long record of hourly data sets and the
perturbing impact of data heterogeneity is relatively small in this catchment. The basin has been observed as
a research catchment by the ETH Zurich since 1975. The outlet drains a 3.18 km2 hilly pre-alpine watershed
with an average precipitation of 1600 mm per year, generating a mean annual runoff of 1046 mm. As a
sub-basin of the Thur catchment it is located in the north-east of Switzerland. Its basic geographical and
land-use characteristics are listed in Table 2. A significant number of studies have been conducted in this
basin. Further information can be found in Gurtz et al. (1999), Zappa (2002) and on the web under http:
//www.iac.ethz.ch/research/rietholzbach. The data we based our study upon is a timeseries consisting
27 years of meteorological1 and discharge measurements. Out of this timeseries we selected a set of 24 flood
events in the time from May until October to avoid the problem of modelling snow accumulation and melting
processes.

area 3.31 km2

maximum altitude 938 m a.s.l.
altitude at basin outlet 681 m a.s.l.
mean altitude 796 m a.s.l.
mean slope 12.5◦

pasture land 67 %
forest 25 %
wetland 4 %
bushes 2 %
roads 2 %

(a) (b)

Figure 2. Overview of the most important basin characteristics2(a); the Rietholzbach catchment is located in the
north-east of Switzerland (b)

3. EXPERIMENTAL SET-UP

In the following, we discuss the experimental set-up and the focused research goals. Firstly we want to show that
one single parameter vector is not able to represent the full range of runoff dynamics within one catchment. Base
of this study was a parameter vector θwb , estimated by semi-automatic calibration and successfully validated
for water-balance simulations within the Rietholzbach catchment (see Pompe, 2009). Furthermore the set of 24
flood events was divided into 4 classes according to their peakflow values (Table 1) and the hydrological model
was calibrated for one event per class by a state-of-the-art optimization algorithm, the Levenberg–Marquardt
algorithm (LMA). As a kind of control measure for selected events we also applied the global optimization
algorithm (SCE) which estimated nearly the same results as LMA. Both algorithms are implemented within
the well known PEST framework. Afterwrds the estimated parameter vector θflood was validated for all events
of the class in comparison with θwb.

Table 1. Classification of the flood events according to peakflow

class description peakflow [mm/h] return period [y]

1 low events 1... < 2 1
2 medium events 2... < 3 2
3 high events 3... < 5 < 8
4 extreme events ≥ 5 > 8

Independently from the results of the first study the found parameter vectors are not estimated to be robust.
Therefore within a second study we compared the developed robust calibration algorithm ROPE with the
previously used optimization algorithm LMA.

1Temperature, precipitation, global radiation, humidity, wind speed and vapour pressure
2adapted from http://www.iac.ethz.ch/research/rietholzbach/overview
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3.1. Rainfall-runoff model WaSiM–ETH

The used hydrological model is WaSiM–ETH. It is a spatial distributed physically based rainfall-runoff model
and was developed by Schulla and Jasper (2007) at the ETH Zürich. WaSiM–ETH has been used successfully
for modelling the rainfall-runoff processes in several studies in catchments located within mid mountain ranges
and especially also in the pre-alpine Rietholzbach catchment Gurtz et al. (1999, 2003a,b). Additionally WaSiM–
ETH has been used for extrapolation of extreme flood events by Cullmann (2006). The model has a modular
structure. Specific modules can be switched on and off depending on the actual task. Within the modules
one can use different algorithms, e.g. Topmodel vs. Richards for modelling the water movement within the
unsaturated soil zone. For this study we used WaSiM–ETH/6.4. with the Richards approach. The model
parameters considered for calibration are the storage coefficients of direct runoff and interflow, kD and kI , and
the drainage density dr which is a scaling parameter of interflow generation (Table 2). In previous studies
(Cullmann, 2006) these three parameters have been proven to be sensitive with respect to modelling flood
events.

Table 2. Overview of the used model parameters considered for calibration

parameter reference value (θwb range description

kD[h] 7 0.01..25 storage coefficient of direct runoff
kI [h] 20 0.01...60 storage coefficient of interflow
dr[−] 2.1 0.01...60 drainage density

3.2. Objective criteria

Within this study commonly used objective functions are applied. The efficiency criterion NS according to
Nash and Sutcliffe (1970) has been widely used to asses the performance of hydrological models. The relative
deviation in peakflow is a simple criterion to asses the model ability to predict correct peakflow values. More
advanced objective functions as for instance the deviation DEVS according to Schulz (1968) or approaches
based on weighting different parts of the hydrograph will be considered in future studies.

Table 3. Objective functions used in this study, where xi is the observed value at time-step i and
yi(θ) is the simulated value estimated by parameter vector θ

name description formula

NS Nash-Suttcliffe efficiency 1−
1
n

Pn
i=1 (xi−yi(θ))

2

1
n

Pn
i=1 (xi−x̄)2

DPEAK Relative peak deviation |xmax−ymax(θ)|
xmax

· 100%

4. RESULTS

4.1. Event classification

As previously supposed, the parameter vector θwb is not able to simulate the rainfall-runoff processes of all flood
events with a sufficient performance. Besides a high relative peakflow error, the dynamics in the observed
hydrograph are not sufficiently well portrayed by the simulation, especially for larger events. The model
calibration with LMA yields promising results. The performance of θwb was outperformed both for peakflow
error and Nash-Suttcliffe efficiency. An overview of the model performance over all events, classified into 4
groups as mentioned before (see 4) is given in Table 4. Further studies (Pompe, 2009) with the same dataset
showed that a coarse event classification according to peakflow into 2 classes and additionally according to the
type of the rainfall event is the most reasonable for the chosen set of parameters. Classification according to
pre-moisture was not proven to be significant. However, this must be seen in the light that we did not consider
any soil-hydraulic parameters in calibration process. Further studies will help to solve this question.
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Table 4. Validation of parameter vector used for water-balance simulations θwb and process specific
parameters θflood

class DPEAK [%] NS [-]

θwb θflood θwb θflood

1 25.3 1.3 0.66 0.67
2 34.0 7.9 0.64 0.49
3 46.9 15.3 0.59 0.56
4 66.6 20.8 0.41 0.34

4.2. Optimization vs. robust calibration

The calibration results for the robust parameter estimation algorithm ROPE yielded a calibration performance
in the range of the results estimated by the optimization algorithm LMA (Table 5). That is not disappointing,
because the objective of ROPE is primarily not better calibration performance but to outperform the validation
performance of parameter vectors estimated by classical optimization. The validation results confirm the
supposed advantages of the approach. The parameter vectors estimated by ROPE outperform the ones
estimated by LMA for both objectives within all classes of runoff events.

Table 5. Calibration results of 4 selected flood events (one per class) estimated by LMA and ROPE and validation of
the estimated parameter vectors for all events of the respective class

Calibration

id event class DPEAK [%] NS [-]

LMA ROPE LMA ROPE

19 June 1995 1 0.1 0.3 0.73 0.81
14 June 1994 2 0.5 2.7 0.58 0.90
9 August 1982 3 0.3 4.4 0.52 0.69
4 August 2007 4 7.0 5.3 0.86 0.77

Validation

class DPEAK [%] NS [-]

LMA ROPE LMA ROPE

1 1.3 0.9 0.67 0.87
2 7.9 3.1 0.49 0.85
3 15.3 5.2 0.56 0.71
4 20.8 6.1 0.34 0.59

5. CONCLUSION AND FUTURE WORK

Within this study we presented two approaches to improve the modelling of flood events within small and fast
responding catchments. First of all it was shown that a single parameter vector is not able to represent the
full range of runoff dynamics within a specific catchment. An adequate classification of runoff events according
to their dominant processes can help to solve this problem. Such a classification should limit its number to its
possible minimum to keep it as simple as possible. Furthermore we presented the application of an enhanced
implementation of the robust parameter estimation algorithm (ROPE). Eventhough the robustness of the
estimated parameter vectors seems to be impressing, the development and understanding of ROPE is still
at its beginning. Further studies will analyze the impact of different depth functions and advanced objective
criteria. Furthermore the approach will be applied to problems with higher dimensions.

The proposed approaches improve the search of robust parameter vectors of hydrological models. This will
help to improve operational flood forecasting techniques, based upon a coupling of physically based hydrological
models and artificial neural networks (see Cullmann, 2006; Krauße, 2007). Furthermore ROPE can be easily
adapted for robust model calibration in other fields.
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