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Abstract:   Habitat loss and fragmentation pose a major threat to flora and fauna worldwide.  For 
those species that can move between habitat patches, it is important to consider the extent to which the 
patches are connected.  This can be complex as many species may inhabit a given landscape, and the scale at 
which each one interacts with the landscape (and consequently its relative ability to move through it between 
patches) may differ.  Nonetheless, designing effective conservation strategies requires prioritising patches for 
protection.  One basis for doing so is the relative importance of patches to maintaining connectivity.  This can 
be estimated by measuring the connectivity of the complete network, and then assessing the extent to which 
that connectivity changes when each patch in the network is removed in turn.  Doing this manually is clearly 
not feasible for a landscape comprised of more than a few patches.   

Obviously modeling landscapes in this way is inherently spatial.  However, the volume of processing 
required to drop each patch from the network and measure how connectivity changes even when the process 
is automated creates a trade-off between the extent to which the spatial representation of the landscape is 
fully realized (spatial realisation) and processing time.  For example, graph theory offers a very efficient 
method to assess connectivity by representing the landscape as a series of nodes (patches) and edges (links 
between patches) in Cartesian space.  This can be extended (‘spatial graphs’) by geo-referencing the nodes.  
However, unless there is no resistance to how a given species moves between patches, it is necessary to 
weight the edges between nodes based on some model of dispersal.  This can be made more spatially explicit 
by weighting edges based on least cost paths (distance between patches taking into account the difficulty of 
the species to move between them using detailed spatial representations of the landscape).  However, doing 
so greatly increases processing times, and may not be feasible to run for large and complex study areas.  
Further, because of the variation in spatial realization between connectivity models, the results of these 
models, especially when considering the importance of individual patches to overall network connectivity, 
can differ substantially.    

Thus, there is a need not only to be able to automate the ranking of patches based on their relative importance 
within the network (for which very few automated tools exist), but also to test the sensitivity of the results to 
the model (and the associated level of spatial realization) that is used.  If patch rankings do vary considerably 
between models, it would make sense to use a model comparison approach to generate the final patch 
rankings (as is frequently done in other disciplines where considerable model uncertainty exists such as fire 
spread modeling or global climate change modeling) before making conservation decisions.  This paper 
presents the Habitat Connectivity Research Software (HABCORES), a software toolbox written for ArcGIS 
9.2, which incorporates three different modeling approaches to habitat connectivity that lie along the 
continuum of possible spatial realism.  Preliminary testing of the tool for a case study of koala habitat in 
south-eastern NSW indicates that different model approaches yield quite different patch ranking results.  
Future work will include assessing the sensitivity of model results to key parameter settings, incorporating 
additional connectivity models into the HABCORES framework, conducting further tests of patch ranking 
sensitivity to the model choice using neutral models and testing connectivity predictions from the model for 
one or more case study species against field data of individual animal movements in a test landscape. 
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1. INTRODUCTION  

Habitat loss, whether due to natural or anthropogenic causes, is widely recognised as an important threat to 
the survival of many faunal species worldwide (Lindenmayer & Fischer, 2006). As habitat is lost, once 
contiguous patches can be subdivided into smaller distributed patches, which can lead to extinctions in many 
species (Reed, 2004).  Maintaining viable species populations within the network of widely distributed 
habitat patches that this creates requires that individuals disperse between the remnant patches. Habitat 
connectivity defines the connectedness, based on the degree which the intervening landscape facilitates or 
impedes movement, of habitat patches for individual species (Taylor et al., 1993) and is used to measure the 
potential for dispersal for a given species between patches (Taylor et al., 2006).   GIS provides a simple yet 
effective method to quantify habitat connectivity where biological data is lacking (Santos et al., 2006) based 
on ‘least-cost’ modelling. This involves calculating the ‘effective distance’; a measure of Euclidean distance 
modified for the effect of the landscape and species behaviour that quantifies the relative difficulty of 
individuals of a given species to traverse through the matrix between sets of habitat patches (Adriaensen et 
al., 2003). Although many studies have used this approach (for example, Drielsma et al., 2007a), few have 
done so to identify the relative importance of individual patches to overall habitat connectivity (for example, 
Saura and Pascual-Hortal 2007). Despite this, doing so is critical for prioritizing conservation decisions 
(Ovaskainen & Hanski, 2003). 

2. HABITAT CONNECTIVITY RESEARCH SOFTWARE (HABCORES) 

The Habitat Connectivity Research Software (HABCORES) is a toolbox extension scripted in Python v2.4 
for use within ESRI ArcGIS v9.2 software for cost-weighted based habitat connectivity (connectivity) 
analysis. Figure 1 outlines the basic datasets and tools in HABCORES that can be used for such an analysis: 
the Identify Unique Patches toolset (1) is used to delineate patches of habitat for the chosen species and 
assign unique identification values to each patch (green boxes). The Cost Surface toolset (2, 3) is used to 

construct cost surfaces of the 
landscape inhabited by the 
chosen species (blue boxes). 
The Habitat Connectivity 
Analysis toolset (4, 5) provides 
the models to implement 
connectivity analysis (red 
boxes).   

HABCORES can be applied to 
a wide range of species across 
many landscapes where 
relevant data exists.  For 
example, for a given landscape 
and species it must be possible 
to map habitat quality based on 
the requirements of that species 
and delineate these into 
patches.  Further, enough about 
the species and landscape must 
be known in order to define 
and represent the cost(s) of that 
species moving between 
patches through the landscape 
matrix and to set a maximum 
dispersal limit (as a distance or 
energy expenditure). 

2.1. Identify Unique Patches Toolset 

This toolset assembles basic functions available in ArcGIS for delineating habitat patches from the 
perspective of a chosen species.  This can either be done by reclassifying an existing habitat quality map into 
Boolean patches, or by taking an existing delineation of patches and assigning each patch a unique ID 
number needed for the rest of the processing. 

 

Figure 1.  Stages of the methodology required to implement 
connectivity analysis. Square boxes represent a tool provided in 
HABCORES or a process which can be implemented within ArcGIS, 
while rounded boxes represent a raster dataset. The numbers appearing 
next to square boxes represent a tool provided in HABCORES. 
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2.2. Cost Surface Toolset 

This toolset also uses basic functions available in ArcGIS to prompt the user to create a cost / resistance 
surface representing the spatial variation in the ease of dispersal of the chosen species between habitat 
patches within the landscape(s) it inhabits.  Various raster data sets representing different costs to species 
movement are first defined, and then these are combined with relative weightings (if desired) to create the 
overall cost surface.  Following Rothley (2005), HABCORES then identifies and fills ‘cracks’ in the cost 
surface.  ‘Cracks’ in a cost surface occur when barriers (linear features, such as roads, which hinder the 
dispersal ability of the chosen species) are inadequately represented in raster format such that least cost 
calculations find shortcuts across these features along diagonals (Rothley, 2005).   

2.3. Habitat Connectivity Analysis Toolset 

This toolset implements three indicative cost-based connectivity models described in the literature, each of 
which provides an estimate of the overall connectivity of the network of patches (and is based on a 
hypothesis of how a species disperses through a given landscape). Once network connectivity has been 
measured initially, this can be repeated for iterations of the network whereby each patch is removed in turn.  
From this, each patch can be ranked based on its relative contribution to the overall network connectivity.  
HABCORES is one of few automated tools that exist to do this (for example, Saura and Pascual-Hortal 
2007), and the only one that incorporates multiple habitat connectivity models within a single analysis 
framework.  The three connectivity models implemented within HABCORES are: 1) Absolute Ecological 
Connectivity Index (ECI); 2) CONNECT and; 3) Least-Cost Path Graph-Theory (LCG Graph). 

 

2.3.1  ECI model 

The Absolute Connectivity Index (ECI) model (Marull & Mallarach, 2005) assigns an ECI value to each cell 
in an output raster dataset based on the least-cost distance of that cell to the nearest set of source cells (habitat 
patch).   The ECI value is defined as: 

 where: xi is the cost distance in a cell and xt is the maximum possible cost 
distance.  

 

The maximum possible cost distance is defined by the maximum dispersal distance of which the chosen 
species is capable. Resultant values range from 1 (minimal connectivity) to 10 (maximum connectivity). This 
results in an exponential decrease in connectivity values over increasing Euclidean distance from habitat 
patches. An advantage of this method is that connectivity estimates for a given species occupying different 
landscapes can be compared directly because values are normalised between 1 and 10. 

 

2.3.2 CONNECT model 

In contrast, the CONNECT model defines the connectivity of each cell to the overall habitat network as the 
amount of energy the chosen species has remaining to disperse to a habitat patch (Villalba et al., 1998). This 
assumes that a given species has a finite amount of energy to spend on dispersal between habitat patches. The 
amount of energy remaining for dispersal decreases as the species moves further away from the initial patch.   
The algorithm begins by assigning maximum amount of dispersal energy to the cells that make up each 
habitat patch. Connectivity calculations then commence from the edges of the patch. Calculating the 
connectivity value for each cell requires identifying the maximum connectivity value within the eight-cell 
neighbourhood surrounding a cell using neighbourhood models. The connectivity value for a cell is 
calculated by iterating the function for all destination cells away from a patch:  

Un = Un-1 - (338 x Rn), where Un is the connectivity value of the cell n, Un-1 is the maximum 
connectivity value within the eight-cell neighbourhood surrounding cell n and Rn is the cost value of cell n.  

The constant 338 adjusts for the geometry of the eight-cell neighbourhood used (Gulinck et al. 1993). These 
calculations continue in all directions from a source patch until all the maximum energy units are exhausted. 
This procedure is repeated for all patches in the extent.  Thus, connectivity decreases linearly with increasing 
Euclidean distance from source patches.  This may be a limitation of the method as an exponential decay may 
be more representative of species dispersal (Villalba et al., 1998; Moilanen & Hanski, 2001; Moilanen & 
Nieminen, 2002).  In the HABCORES implementation of CONNECT, cell values in the final output dataset 
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can be defined as either the maximum or the sum of all connectivity values calculated for individual cells 
from all patches. These two options have different implications for overall connectivity. The former provides 
the ‘best case scenario’ connectivity of each cell to the network (the connectivity of each cell to the closest 
least-costly patch), while the latter estimates the total connectivity of each cell to the network (the 
connectivity of each cell to all patches).  

 

2.3.3  Least-Cost Path Graph Theory (LCP graph) model 

Graph theory provides a very efficient means by which to analyse network connectivity for the initial 
landscape and after each patch has been removed in turn.  This is done by representing habitat patches within 
a landscape as a series of nodes connected by edges (Urban & Keitt, 2001; Minor & Urban, 2008). The 
strength of the connection at a given edge is based on models of species dispersal.   Although various 
functions can be used to generate edge connection values (for example, the larval dispersal kernals based on 
ocean currents used by Treml et al., 2008), HABCORES weights the edges with the least-cost path distance 
(LCPD) between patches.   The overall connectivity of the graph is defined from three variables: 1) 
Recruitment, 2) Flux and 3) Traversability (Urban & Keitt, 2001).  

Recruitment refers to the ability of patches across the landscape to recruit and accommodate individuals of 
the species (Urban & Keitt, 2001). A landscape dominated by large patches of high quality habitat can 
support more individuals, which then have a greater potential to disperse across the landscape (Liender et al., 
unpublished). Recruitment is defined as:  

where n is the number of patches in the graph, si is the size of patch i and ki is some scaling 
function representing habitat quality of patch i . 

HABCORES defines the size of each patch as a fraction of the total specified environment extent.  

Flux defines the degree to which patches across an extent are able to exchange individuals via dispersal by 
acting as sources and sinks (Liender et al., unpublished). Flux is defined as: 

where n is the number of patches, si and sj are the sizes of 
patches i and j respectively, ki and kj is a scaling function 
indicating habitat quality of patches i and j respectively, R is the 

Recruitment and pij is the probability of dispersal between patches i and j.   

The probability of dispersal, pij, is calculated in HABCORES by:   

pij = exp(θ x dij) where dij is the LCPD between patches i and j and θ is a distance-decay coefficient (θ < 
0) which describes the exponential decrease in connectivity over Euclidean distance. The distance-decay 
coefficient value is a user-defined parameter (see Okubo & Levin 2001). 

Finally, traversability refers to the distance over which all patches are connected and is a measure of graph 
connectedness (Liender et al., unpublished). Traversability is defined by the diameter of the graph, which is 
defined as the longest weighted-path between any two nodes in a graph with weighted paths between nodes 
being the shortest possible weighted path distance. HABCORES calculates Graph Diameter using Dijkstra’s 
Algorithm (Dijkstra, 1959). 

The efficiency of the graph data structure typically enables detailed analysis across broad areas for which 
other models may be too computationally intensive to be feasible (Urban & Keitt, 2001; Minor & Urban, 
2008; Treml et al., 2008).  However, the use of LCPD to weight edges within HABCORES partially offsets 
this advantage because calculating LCPDs is computationally intensive. 

 

3. MODELLING KOALA HABITAT CONNECTIVITY WITH HABCORES 

Multiple models exist for measuring habitat connectivity.  If the connectivity estimated for a given network 
of habitat patches differs based on the model used (likely), then the most reliable way to prioritise patches 
based on their importance to network connectivity (in the absence of definitive field data that establishes 
which model most closely approximates reality) is to select those patches that rank highly across all models.   
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3.1. Case study setup 

To test this, we used HABCORES to assess connectivity and rank 
patches based on their contribution to overall connectivity of koala 
habitat in the Upper Nepean-Avon region of south-eastern New South 
Wales (Figure 2).  This area was chosen due to the large number of 
potential habitat patches for koala, ensuring a sufficient number of 
patches based on which to compare rankings.  Detailed data on habitat 
quality (DECC 2007), as well as data relevant to koala movement costs 
(i.e. roads, water bodies, slope, and vegetation communities) were 
sourced from the New South Wales Department of Environment and 
Climate Change (DECC) and used to delineate habitat patches and 
construct a cost surface for dispersal (see Cook 2008).       

All three models in HABCORES were used to assess overall 
connectivity of koala habitat patches, with the maximum dispersal 
distance set to 4km (DECC 2003, Dique et al 2003, McAlpine et al 
2007).  The sum option within the CONNECT model was used 
(indicating the connectivity of each cell to all, rather than just the closest, 
habitat patches). For the LCP graph model, a negative distance-decay 
dispersal coefficient of -0.00017 was used (Rhodes et al 2006).  Following this, patches were ranked based 
on their relative contribution to overall connectivity (with 1 as the most important) for each model.  These 
results were then combined to generate an overall ranking based on agreement across all three models. 

3.2. Case study results 

HABCORES defined 30 individual koala habitat patches covering 30% of the study area (Figure 3-C).  The 
patches are relatively evenly distributed with some large patches (largest patch covers 7% of the study area).  
The koala population was estimated to be highly connected by all three models (Figure 3). 

The average ECI value was 2.6383 with 87% of the study area 
accessible to koalas. Similarly, CONNECT found high 
connectivity overall (89% of the study extent is accessible to 
koalas), especially in the southern and central areas.  Finally, the 
LCP graph model found koala patches to be highly connected as 
well, with only two of the 30 habitat patches completely isolated. It 
also showed that koala dispersal between the northern and southern 
habitat areas is possible via patches in the central or western areas.   
Ranking patches by their contribution to overall connectivity (with 
1 as the greatest contribution) showed that patches in the centre of 
the study area contributed most (Figure 4), followed by those that 
link other patches to those in the central area (i.e. the fifth ranked 

 

Figure 2.  Case study area. 

 

Figure 3. Koala habitat connectivity based on the: A - Absolute ECI, B – CONNECT, and C -  LCP 
Graph models as implemented in HABCORES. 

 

Figure 4.  Koala habitat patch 
rankings.  
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patch).  The highest ranked patch provides the connection between the northern and southern sections of the 
study area.  Despite the fact that the models produced very similar overall results, for some patches the 
rankings varied quite substantially between the models (Table 1).  

For example, the ranking for patch # 17 varied by 27 
positions (out of 30 possible), from a rank of 3 (ECI) to 30 
(LCP graph).  ECI likely ranked this patch so highly due to 
its large size (removing extensive habitat results in fewer 
cells used as sources for calculations). In contrast, LCP 
graph considers the spatial context of each patch (via flux 
and traversabililty) as well as patch size.  Flux increased 
considerably when this patch was removed, lowering its 
ranking. However, ECI may incorporate the hostility of the 
matrix into rankings in ways the LCP graph model may not. 
Consider a patch completely surrounded by a hostile 
section of the landscape. The LCP graph model will find a 
single least cost path through the hostile area, while ECI 
will consider connectivity in all directions.  

4. DISCUSSION AND CONCLUSIONS 

This study demonstrates that using different models for estimating patch connectivity, even for a fairly 
homogeneous study area, can generate quite different results especially when patches are ranked for their 
relative contribution to network connectivity.  This could be tested more rigorously using neutral models 
(Gardner and Urban 2007).  Also, more models should be incorporated into HABCORES to represent the full 
range of approaches that exist – for example a graph theory approach where edges are weighted by other 
means is missing, as well as the interesting ‘spatial links’ approach (Drielsma et al 2007).  Even the 
preliminary results evident from this study, however, suggest that conducting sensitivity analysis of these 
models in general (see Lilburne and Tarantola 2009), and the use of a model comparison approach when 
interpreting results, is advisable.  One clear difference between the various models is the degree to which the 
spatial context within which dispersal operates (spatial realisation) is fully represented.  A key problem here 
is the trade-off between the level of spatial realisation and processing times.  For example, a graph theory 
approach where edges are weighted using a simple distance decay diffusion model is highly efficient and thus 
feasible to run for extensive and complex landscapes.  This changes dramatically when the edges are 
weighted by LCPs, the calculation of which require very detailed depiction and processing of the spatial 
context of patches and factors that influence the ability of organisms to move between them through the 
matrix.  Drielsma et al (2007) offer interesting ideas about how this might be addressed – for example, by 
analyzing subsets of the possible linkages between patches until the results stabilize at a likely pattern 
(similar to a genetic algorithm approach).  Finally, efforts should be made to obtain actual field data of 
animal movements through a real landscape for use in testing the performance of connectivity predictions 
made by a range of models, each of which essentially provides a hypothesis about how species disperse. 
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4 27 3 24

11 12 28 -16
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