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Abstract: Multilevel domain decomposition methods have attracted significant attention for solving nonlinear
equations. In this paper we study several two-level domain decomposition algorithms for solving nonlinear
algebraic systems arising from the discretization of coupled systems of partial differential equations. The
class of Newton-Krylov-Schwarz algorithms (NKS) is often used for such problems, and the robustness and
scalability of NKS depends heavily on its inner most component; i.e., the Jacobian preconditioner. In this
paper, we investigate four two-level overlapping domain decomposition preconditioners, all designed as gen-
eral purpose preconditioners for systems of PDEs. To show the parallel efficiency of the algorithms, we apply
them to some rather difficult nonlinear systems obtained from the one-shot discretization of inverse problems.
Linear and superlinear scalability results are obtained on parallel computers with hundreds of processors.
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1 . INTRODUCTION

Computer simulations of many interesting physical phenomena require the numerical solution of systems
of partial differential equations. This includes, for example, the modeling of the global climate, fluid flows
around airplanes, or blood flows in the human body (e.g. Barker and Cai, 2009, Cai et al., 1998, and Yang et
al., 2009). One of the key elements of simulation technologies is the design and implementation of algorithms
and software that are scalable for massively parallel computers. In this paper, we discuss some domain
decomposition methods, which are a class of divide-and-conquer methods for solving mathematical problems
defined on a physical domain for large-scale simulations on parallel, distributed-memory computers. The
focus is on several two-level domain decomposition algorithms that exhibit linear, and sometimes superlinear,
scalability for solving complex coupled problems. To show the applicability of the techniques, we present
some results obtained from solving some difficult systems arising from the one-shot method for solving
inverse problems, such as























−β∆ρ + ∇u · ∇λ = 0

−∇ · (ρ∇λ) + (u − z) = 0

−∇ · (ρ∇u) − f = 0,

(1)

in whichρ(x, y) is the coefficient to be determined and it satisfies the forward problem
{

−∇ · (ρ∇u) = f(x, y), (x, y) ∈ Ω ⊂ R2

u(x, y) = g(x, y), (x, y) ∈ ∂Ω,
(2)

whose solutionu(x, y) is supposed to be available through measurementz(x, y). Hereλ(x, y) is the Lagrange
multiplier andβ is a regularization parameter. More details about (1) will be discussed in Section 2. Using
the standard finite difference method, (1) is transformed into a large nonlinear system of equations

F (X) = 0, (3)

whereX represents the unknownsρ, u, andλ defined at the mesh points.

2 . MULTILEVEL DOMAIN DECOMPOSITION METHODS

The rest of the paper is focused on the class of Newton-Krylov-Schwarz methods (NKS)(Cai et al., 1998)
for solving (3). LetX0 be an initial guess. The inexact Newton iteration is carried out in two steps. First, a
Newton direction∆Xk is computed approximately by solving

‖F (Xk) + J(Xk)∆Xk‖ ≤ η‖F (Xk)‖, (4)

and then the current solutionXk is updated to obtain a new solution

Xk+1 = Xk + ξk∆Xk. (5)

HereJ(Xk) = F ′(Xk) is the Jacobian matrix atXk, ξk is the steplength determined by a linesearch procedure
(Dennis and Schnabel, 1996), andη is the linear stopping condition. The Jacobian system is often large,
sparse, and highly ill-conditioned. A high quality preconditioner is essential for the success of NKS. Three
requirements for the preconditioner are: (1) capable of decreasing the condition number ofJ substantially,
(2) highly parallel in order to solve the problem on computers with hundreds or even thousands of processors,
and (3) not sensitive to certain noise in the problem. We next consider the class of two-level overlapping
Schwarz preconditioners.

Following the convectional notations (Toselli and Widlund, 2005), we rewrite the Jacobian system asAX = b,
and we describe the Schwarz method as a right preconditioner

(AM−1)X ′ = b, (6)

andX = M−1X ′ is the actual solution. To formally define the one-level additive Schwarz preconditioning
matrix M−1, we first partition the computational domainΩ into N non-overlapping subdomainsΩl, l =
1, · · · , N , whereN equals the number of processors (np). Each subdomainΩl is extended to a larger region
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Ω
′

l, such thatΩl ⊂ Ω
′

l ⊂ Ω. On each subdomain, we defineAl as a restriction ofA in Ω
′

l. Let B−1
l be the

inverse ofAl, or an approximation, the one-level restricted additive Schwarz preconditioning matrix can then
be written as

M−1
AS =

N
∑

l=1

(R0
l )

T B−1
l Rl, (7)

whereRl restricts a vector fromΩ to Ω
′

l, andR0
l is defined similarly but only works for the non-overlapping

partΩl. When the number of processors is small, the one-level preconditioner works well for many difficult
problems. However, when the number of processors is large, the communication of information between dis-
tant subdomains becomes slow, and as a result, NKS converges very slowly and sometime doesn’t converge at
all. To improve the communication, we introduce a coarse-level solver, which provides global communication
for distant subdomains. With different combinations of coarse and local subdomain matrices, four types of
two-level preconditioners can be defined.

To describe the algorithms, we assume that there are two meshes available onΩ. On the fine mesh the Jacobian
system is given asA, and on the coarse mesh the Jacobian matrix is given asAc. We also assume there is an
interpolation matrixIf

c which maps a coarse mesh vector to a fine mesh vector, and a restriction matrixRc
f

which maps a fine mesh vector to a coarse mesh vector. There are many choices of coarse meshes, as well as
interpolation and restriction matrices, we don’t discuss the details here because of the limited available space.
Interested readers should consult with related literatures (e.g. Toselli and Widlund, 2005).

Let M−1
c = If

c A−1
c Rc

f . Corresponding to the idea of multigrid V-cycle (Briggs et al., 2000), a two-level mul-
tiplicative Schwarz preconditioner consists of three basic steps: a one-level additive Schwarz pre-smoothing,
a coarse grid correction, and a one-level additive Schwarz post-smoothing. The preconditioner matrix is
defined as

M−1
mult = A−1[I − (I − AM−1

AS)(I − AM−1
c )(I − AM−1

AS)]. (8)

If the pre-smoothing step is omitted, the two-level multiplicative Schwarz preconditioner is changed to the
so-called kaskade (cascade) Schwarz preconditioner

M−1
kask = A−1[I − (I − AM−1

AS)(I − AM−1
c )]

= M−1
c + M−1

AS − M−1
ASAM−1

c .
(9)

The last term in the kaskade Schwarz preconditioner consists of matrix-matrix multiplications, which may
be hard to parallelize. If we choose to drop that term, we arrive at the classical two-level additive Schwarz
preconditioner

M−1
addi = M−1

c + M−1
AS . (10)

Borrowing an idea from grid sequencing, which uses an interpolated coarse grid solution as the initial guess
for the fine grid iteration, we can define another multiplicative Schwarz type preconditioner, which is very
similar to the full multigrid V-cycle,

M−1
full = M−1

c

+ A−1[I − (I − AM−1
AS)(I − AM−1

c )(I − AM−1
AS)]

− A−1[I − (I − AM−1
AS)(I − AM−1

c )(I − AM−1
AS)]AM−1

c .

(11)

3 . INVERSE ELLIPTIC PROBLEMS

To understand the efficiency of the algorithms, we consider the system of nonlinear equations arising from
the one-shot finite difference discretization of inverse elliptic problems in two-dimensional space. Specifi-
cally, we want to determine the coefficient functionρ(x, y) in (2) assuming some measurement ofu(x, y) is
available asz(x, y). We use the output least-squares Tikhonov regularization method to convert the inverse
problem into a least-squares minimization problem:

minimize J(ρ, u) =
1

2

∫

Ω

(u − z)2dx +
β

2

∫

Ω

|∇ρ|2dx, (12)

with the constraint (1) satisfied by the pair(ρ, u). Theβ-term is called the regularization term, in which the
constantβ controls the strength of regularization.
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For the above constraint optimization problems, we define the Lagrangian functional as

L(ρ, u, λ) =
1

2

∫

Ω

(u − z)2dx −

∫

Ω

(∇ · ρ∇u + f)λdx +
β

2

∫

Ω

|∇ρ|2dx. (13)

Under certain assumptions, the solution of (12) is the solution of the following saddle-point problem: Find
(ρ, u, λ) such that























(∇ρL)q = 0

(∇uL)ω = 0

(∇λL)µ = 0

(14)

for any(q, ω, µ). This system leads to (1), which is solved with the boundary conditions
∂ρ

∂n
= 0, λ = 0, and

u = g on∂Ω.

For simplicity, we only consider the case thatΩ is a rectangular domain covered by a uniform mesh of size
h, and we discretize (1) with the standard five-point central finite difference. The ordering of the unknowns
and the ordering of the equations are crucial in our algorithms. They are ordered mesh point by mesh point in
a “fully coupled” manner (Cai et al., 2009). The ordering of variableu and variableλ is switched in order to
avoid the zero pivot problem in the LU factorization based subdomain solver.

4 . NUMERICAL RESULTS AND DISCUSSION

We study the performance of the proposed algorithms for two problems defined on different computational
domains. We assume that the observed function takes the formz(x, y) = sin(πx) sin(πy) or z(x, y) =
cos(πx) cos(πy). The Newton iteration is stopped if the following condition is satisfied:

‖F (Xk)‖ ≤ max
{

10−6‖F (X0)‖, 10−10
}

. (15)

A restarted GMRES is employed to solve the Jacobian system, and the GMRES iteration is stopped if

‖F (Xk) + J(Xk)∆Xk‖ ≤ max
{

10−6‖F (Xk)‖, 10−10
}

. (16)

To test the robustness of the algorithms, random noise is added to the observation data, andδ represents
the magnitude of the noise level. To measure the accuracy of the numerical solution, we computeerroru

anderrorρ, which are the normalized discreteL2 norms of the errors. In the case of high noise level, (i.e.,
δ = 10%), we smooth the measured dataz before the Newton iteration (Cai et al., 2009). In addition to
the accuracy issues, we pay close attention to the scalability of the algorithms with respect to the size of the
problems and the number of processors. We implement our algorithms using the Portable Extensible Toolkit
for Scientific computation (Baley et al., 2009). All programs are run on an IBM Blue/Gene L supercomputer
with 1024 nodes.

Test 1. This problem is defined on the domainΩ = (0, lx) × (0, ly), and the right-hand sidef is constructed
so that the elliptic coefficient to be identified is

ρ = 1 + (−1)i+j100[(x − i)(y − j)(1 − (x − i))(1 − (y − j))]2,

when(x, y) ∈ [i, i + 1) × [j, j + 1). i andj are integers less thanlx andly, respectively.

Test 2. This is a more complicated problem defined on a larger domain(−4.5, 4.5) × (−4.5, 4.5). The
right-hand sidef is chosen so that the elliptic coefficient to be identified is

ρ = 8 + 3(1 − x)2e−x2
−(y+1)2 − 10

(

1

5
x − x3 − y5

)

e−x2
−y2

−
1

3
e−(x+1)2−y2

.

In Test 1, we first fix the domain to be the unit square and test the problem with different mesh sizes,1/40,
1/80, 1/160, and1/320 to check the accuracy of the algorithms. The error and the number of Newton
iterations are shown in Table1. It is clear that the algorithms converge to the solution for different mesh sizes
with different noise levels. The total number of Newton iterations is stable and not sensitive to the noise level.
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Figure 1. Numerical results of Test 2 on the computational domain(−4.5, 4.5) × (−4.5, 4.5). These four
pictures show the numerical solutions (left two) and errors (right two) withδ = 0% (top two) andδ = 10%

(bottom two).

When the noise level is high, largerβ values are generally necessary for Newton to converge. For a given
noise level, the results are usually more accurate when a finer mesh is used.

For Test 2, we first show the numerical solutions in Figure1. The numerical results indicate that our algo-
rithms are capable of solving complicated problems defined on a large domain.

To study the parallel scalability of the algorithms, we consider a rather fine mesh1830× 1830 and we use up
to 900 processors in the experiments. The inter subdomain overlap is fixed to be10.

In Table2, we show the number of Newton iterations, the average number of GMRES iterations, and the
total running time for Test 1 withlx = ly = 2. The one-level additive Schwarz algorithm and the two-
level algorithms all require the same number of Newton iterations to converge. As the number of processors
increases, the GMRES iteration of the one-level algorithm increases dramatically. This also results in the
divergence of the one-level algorithm in several tests using400 or 900 processors. However, the GMRES
iteration of all two-level algorithms stays at near a constant, which results in great improvements in both the
running time and the scalability.

Among the four two-level algorithms, additive Schwarz requires more iterations and running time. The full
algorithm takes the smallest number of iterations, and the Kaskade version is the fastest in terms of running
time. All two-level algorithms have achieved linear or even superlinear scalability in this test case with
np = 100, 144, 225, 400, and900. The kaskade-type and full-type algorithms usually have better scalability
than the multiplicative and additive algorithms. These results are shown in Figure2.

5 . CONCLUSIONS

Several two-level domain decomposition methods were studied for very large nonlinear systems on computers
with hundreds of processors. Specifically, we investigated four preconditioners for solving the coupled system
arising from the one-shot discretization of inverse elliptic problems. We showed numerically that the two-
level approaches outperform the previously introduced one-level algorithm in terms of both iteration numbers
and the computing time. Linear and even superlinear scalability were observed for the two-level methods. In
addition, we found that the methods are stable even with high-level noise in the data.
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Table 1. This table shows the errors and the number of Newton iterations for Test 1 whenlx = ly = 1.

mesh β and δ erroru errorρ Newton

41× 41 β = 10
−7, δ = 0 0.000014 0.001261 3

β = 10
−5, δ = 1% 0.000560 0.009130 3

β = 10
−4, δ = 10% 0.005382 0.030639 4

81× 81 β = 10
−7, δ = 0 0.000011 0.001021 3

β = 10
−6, δ = 1% 0.000264 0.008025 3

β = 10
−5, δ = 10% 0.002372 0.022016 4

161× 161 β = 10
−7, δ = 0 0.000011 0.001029 3

β = 10
−6, δ = 1% 0.000167 0.004910 3

β = 10
−5, δ = 10% 0.001184 0.015266 4

321× 321 β = 10
−7, δ = 0 0.000011 0.001034 3

β = 10
−6, δ = 1% 0.000113 0.004465 3

β = 10
−5, δ = 10% 0.000687 0.013618 4

641× 641 β = 10
−7, δ = 0 0.000011 0.001035 3

β = 10
−6, δ = 1% 0.000086 0.003530 3

β = 10
−6, δ = 10% 0.000392 0.010869 4

Table 2. This table shows the running time and average GMRES iteration per Newton iteration of Test
2 in both one-level and two-level algorithms forδ = 0%, 1%, and10%, with lx = ly = 2. β =
10−6, 10−5, and10−5 are employed to solve these three problems.3, 4, and4 Newton steps are required
respectively. “/” means the GMRES iteration is over500 for that test.

δ = 0% δ = 1% δ = 10%

np Type GMRES Time(s) GMRES Time(s) GMRES Time(s)
The results of the one-level method

100 One-level 109.7 416.2 70.5 441.3 114.0 563.2
144 One-level 153.9 354.4 82.8 318.2 144.5 491.3
225 One-level 183.0 232.7 99.0 203.7 265.8 413.1
400 One-level 283.0 187.7 / / / /
900 One-level / / / / / /

The results of the two-level method
100 Full 8.0 240.6 5.5 299.0 6.0 302.7
144 Full 8.0 158.5 6.0 198.7 6.0 198.9
225 Full 9.0 91.4 6.5 111.7 6.0 109.7
400 Full 8.7 50.6 6.3 61.5 6.0 60.9
900 Full 9.3 25.3 6.8 30.7 6.0 30.0

100 Kaskade 10.0 219.5 7.3 279.9 7.8 282.0
144 Kaskade 9.7 143.0 7.0 181.4 8.0 184.5
225 Kaskade 10.0 79.1 7.3 99.4 8.0 100.7
400 Kaskade 9.7 43.5 7.3 54.0 8.0 55.4
900 Kaskade 10.3 21.7 7.3 26.5 7.0 27.0

100 Additive 47.7 339.4 36.5 403.7 35.3 398.7
144 Additive 46.3 225.8 35.8 268.5 34.3 264.0
225 Additive 49.3 136.0 37.0 156.6 34.5 152.2
400 Additive 48.3 77.1 34.5 82.6 32.8 84.3
900 Additive 46.3 37.4 33.5 42.0 32.3 40.9

100 Multiplicative 14.3 277.4 10.0 333.8 10.5 337.5
144 Multiplicative 14.7 184.5 9.8 218.9 10.3 221.6
225 Multiplicative 15.7 108.6 10.8 126.1 10.8 126.1
400 Multiplicative 15.7 61.1 10.3 69.2 10.5 69.7
900 Multiplicative 14.7 29.1 9.8 33.3 9.0 32.4
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Figure 2. Running time (left two) and speedup curve (right two) as compared to the ideal speedup for Test
1 for δ = 0% (top two) and10% (bottom two). ◦, ∗, +, ∆, and∇ in the pictures represent the one-level
case, the full type two-level case, the kaskade type two-level case, and the multiplicative type two-level case

respectively.
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