
A Proposed Checklist for Building Complex Coupled Models

1,2,3J. W. Larson

1Mathematics and Computer Science Division, Argonne National Laboratory
9700 S. Cass Avenue, Argonne, IL 60439, USA

E-Mail: larson@mcs.anl.gov
2 Computation Institute, University of Chicago and Argonne National Laboratory

Chicago, IL 60637, USA
3 Department of Computer Science, The Australian National University

Canberra ACT 0200, Australia

Keywords: Multiphysics Systems; Multiscale Systems; Coupled Systems; Parallel Computing; Software Engineering

ABSTRACT

Coupled problems occur widely in the pure and applied sciences and engineering. Two types of models are becoming
more common—multiscale models, which couple physical phenomena operating on different spatiotemporal scales, and
multiphysics models, which couple distinct natural phenomena. The modelling of coupled systems is an emerging
discipline that is now the focus workshops and conferences. Many groups have created model coupling software, spanning
a spectrum ranging from custom-made, problem-specific solutions and application domain-specific frameworks to open-
source and commercial generic coupling infrastructure packages.

Constructing complex coupled models from numerous interacting models—orconstituents—can be notoriously difficult.
Coupled models exhibitknowledge, software, andalgorithmic / computationalcomplexity. Interdisciplinary teams are
the mechanism used to master knowledge complexity. But how does one grapple with the other two types of complexity?
Current practice is an ad hoc approach in which an interdisciplinary group achieves their goal by “just figuring it out”
(JFIO). The problem with JFIO is it often begins with a team feeling thwarted and overwhelmed, proceeds without a clear
roadmap, entails generous amounts of trial-and-error, and is prone to surprises that can cause delays. Furthermore, in
software engineering terms JFIO is of low-level process maturity (e.g., not reproducible).

Coupled systems thus far built typically have relatively few (∼5− 10) constituents. Any attempt to tackle more complex
system modelling exercises such as coupling climate to energy and economics models or simulating a whole organism
like the human body will require coupling of a significantly larger number of constituents. It is doubtful that JFIO will
scale to meet such a challenge.

Ideally, one would like a “cook book” approach to building a coupled model. In response to this desideratum I propose
a methodology comprising a series of exercises and associated questions whose object is to define the requirements for a
software implementation of a coupled system. This approach is distilled from years of experience as one of the software
architects for the coupling infrastructure for the Community Climate System Model (CCSM; http://ccsm.ucar.edu) and my
involvement in scientific community software framework projects such as the Earth System Modeling Framework (ESMF;
http://www.esmf.ucar.edu), the Common Component Architecture (CCA; http://www.cca-forum.org), and Framework
Application for Core-Edge Transport Simulation (FACETS; http://facetsproject.org). This analysis technique is also drawn
from my own theoretical work on coupled models in which I have devised terminology, notation, and complexity metrics.

I review previous theoretical work on coupling that is relevant to the exercises outlined in this paper. I then propose
a checklist to guide a developer through the requirements-gathering and early design processes for a coupled model.
This checklist comprises a series of exercises to identify properties of the envisioned coupled system and to identify
and analyse its couplings, elucidating their input/output relationships, types, frequency, and estimated overhead imposed
on the constituents. The checklist also covers commonly encountered software engineering issues. This is a proposed
checklist: The set of exercises and questions may not fit a given problem perfectly; I encourage the reader to extend,
prune, or modify them as necessary. I discuss in brief how distributed-memory parallelism (DMP) complicates this
analysis. I offer the reader some advice on how the exercises need to be modified for application to DMP. I conclude
that the approach is usable for situations in which coupling occurs in a single address space, but under DMP may become
sufficiently laborious that automation may be required.

18th World IMACS / MODSIM Congress, Cairns, Australia 13-17 July 2009
http://mssanz.org.au/modsim09

831

1 INTRODUCTION

Natural and human systems are frequently complex and composed of numerous interacting parts. These interactions are
calledcouplings, and simulation these systems requirescoupled models. In recent years, multiphysics and multiscale
models have become more prevalent, spawning a specialty area that has its own conferences and journals. A wide variety
of coupling software mechanisms (Michopoulos et al. [2005] and references therein) have been built, including a number
of generic coupling products (Larson et al. [2005]; Joppich et al. [2006]; COMSOL, Incorporated [2009]; Lethbridge
[2004]). A tool set exists, but what tools does one need in constructing a new coupled model, and how are they to
be applied? This is the central question facing anyone wishing to build a coupled simulation system. Before any tool can
be applied, the boundaries of the coupled model must be drawn, its parts and their interactions identified. Additionally,
since these systems are almost always built from legacy codes, a strategy for their inclusion in the coupled system is
required. Coupled models are built by interdisciplinary groups through an ad hoc process. Development of new coupled
systems could benefit from a systematic approach for the requirements gathering and early design stages of software
construction.

In this paper I propose a set of exercises and associated questions that reveal a system’s coupling relationships and provide
a framework for assessing the legacy parts from which the coupled system will be implemented. This methodology is
my attempt to summarise and record what has worked in previous projects. It is also based on a theoretical framework
for describing coupled systems whose descriptive power has been demonstrated in analysing an existing coupled system
(Larson [2009]).

I address this paper to prospective coupled system builders. The proposed set of exercises and questions may not fit a
given problem perfectly. I urge the reader to extend, prune, or modify the set of exercises and questions as necessary.

In Section 2 I summarise previous work on a conceptual framework for describing coupled systems, stating definitions
and fixing notation relevant to this paper. In Section 3 I state a set of checklist questions coupled systems developers
should ask themselves, and how answers to these questions relate to requirements.

2 ANATOMY OF A COUPLED SYSTEM

Below is a brief sketch of a coupled system; further details are given by Larson [2009].

A coupled systemM hasN subsystem models calledconstituents{C1, . . . , CN}; Ci solves its model equations for its
state variablesφi, using a set ofinput variablesαi produced by other constituents, and produces a set ofoutput variables
βi for consumption by other constituents.Ci has a spatial domainΓi; its boundary∂Γi is the portionΓi exposed to other
models for coupling.Ci is likely to depend on the timet. Thestate, input, and output fieldsof Ci areUi ≡ φi × Γi

Vi ≡ αi × ∂Γi, andWi ≡ βi × ∂Γi, respectively.

CouplingbetweenCi andCj occurs if they coincide in time; theircoupling overlap domainΩij ≡ Γi ∩ Γj 6= ∅; and
outputs from one constituent serve as inputs to the other, specificallyWj ∩ Vi 6= ∅ and/orVj ∩ Wi 6= ∅, or the inputs
Vi (Vj) can be computed from the outputsWj (Wi).

Many types of couplings exist. Couplings may be classified based on temporal relationships between their outputs and
inputs. Instantaneous data deliveryis the provision of instantaneous values ofWj at one or more times per coupling
event.Integrated data deliveryoccurs ifWj are integrated with respect to time over an interval∆tij and delivered toCi

as averages (accumulated fluxes) for (incremental) application asVi. Couplings may be classified based on the temporal
relationship betweenWi andUi Diagnostic couplingoccurs if theWi are computeda posteriorifrom theUi. Prognostic
couplingoccurs if theWi are computed as a forecast fromUi. Another classifier for couplings is whether constituent
states are divorced from their inputs and outputs.Explicit couplingoccurs if there is no overlap in space and time between
theUi andUj . Implicit couplingoccurs if there is space/time overlap in variables common to bothUi andUj , requiring a
simultaneous, self-consistent solution. Couplings may be classified according to the number of constituents participating
in a coupling event.Bipartite coupling involves two constituents; for explicit coupling one constituent provides data for
the other’s consumption, while in implicit coupling a self-consistent solution for the two parties’ shared state is calculated.
Multipartite couplinginvolves three or more constituents; for explicit coupling, multipartite couplings may be broken into
individual events in which two or more constituents provide the same data for consumption by a third constituent—a
process requiringmerging.

In a computer implementation ofM, {C1, . . . , CN} are usually numerical models, and their spatial domains and time are
discretised by the discretisation operatorD̂i(·), resulting in spatial mesheŝDi(Γi) andD̂i(∂Γi) and a set of timesteps
{t0, t1, . . .}. Thus, model input, output, and state data exist in the form ofstate, input, andoutput vectorŝUi ≡ φi ×

832

D̂i(Γi), V̂i ≡ αi × D̂i(∂Γi), andŴi ≡ βi × D̂i(∂Γi), respectively.

For bipartite explicit coupling, acoupling transformationTij : Ŵj → V̂i convertsŴj to V̂i; Tij is a composition
of a mesh transformationGij : D̂j(Ωij) → D̂i(Ωij) and afield variable transformationFij : βj → αi. Intergrid
interpolation is a simple example ofGij , but Gij can be more general. The variable transformationFij is defined by
natural law relationships betweenβj and αi (e.g., black-body radiation fluxes from temperature computed by using
the Stefan-Boltzmann law). In general,Gij ◦ Fij 6= Fij ◦ Gij ; that is, the ordering ofFij andGij is chosen by the
coupled model developer and is a source of coupled model uncertainty. Multipartite explicit coupling proceeds via a
merging transformationM . If Cj andCk provide coincidental (i.e., shared colocated variables) input toCi, thenMijk :

(Ŵj ,Ŵk) → V̂i computes field variable, intermesh interpolation, and weighted merging operations, with their ordering
chosen by the model developer, and again this order dependence is a source of coupling uncertainty.

For bipartite implicit coupling betweenCi andCj , overlapping portions ofUi andUj are computed by asolverSij ,
which computes the self-consistent solution(Ûi, Ûj), handling both numerical solution and intermesh transformation.
Multipartite implicit couplings are handled in a similar fashion; for exmple, an implicit coupling betweenCi, Cj, andCk

has a solverSijk that computes the self-consistent solution(Ûi, Ûj , Ûk).

The time evolution ofM is marked bycoupling events, which are eitherscheduledor threshold-triggered, the latter based
on some condition satisfied by the constituents’ states. A scheduled coupling may beperiodic. If all of the couplings
in M are periodic, there is a repeatable set of coupling events called acoupling cycle. It is possible to form ratios of
typical coupling time intervals∆tij and constituent timesteps∆ti and∆tj , and classify couplings astight or loose. Tight
coupling occurs on intervals comparable to individual constituent timesteps. Loose coupling occurs on timescales of
many constituent timesteps. Implicit coupling implies tight coupling, while explicit coupling is more likely to be loose
coupling.

Construction of a coupled model amounts to solving thecoupling problem: GivenN constituents, their domains, and
data dependencies, construct any required coupling transformationsTij , solversSij , and merging transformations and
multipartite solvers, resulting in the coupled modelM.

The discussion of coupling thus far is equally applicable to a single global address space or a distributed-memory parallel
system. Discussion of coupling in parallel systems is deferred until Section 3.3.

3 CHECKLIST

Below I list a set of exercises developers of new coupled models should undertake and questions they should ask early in
the development process.

3.1 SYSTEM INTEGRATION SOFTWARE ENGINEERING ISSUES

Exercise 1 (Identification of the Product) Define the system to be simulated, listing its constituents. Identify coupling
relationships known a priori from known natural-law relationships between the subsystems.

During this exercise, consider the following questions: What is to be achieved by creating a coupled system? What is
its projected lifetime, and how will it change over its life cycle? Has somebody already solved the problem, either in the
form of a coupled application that can be modified or a software framework or toolkit that can be leveraged to develop the
system?

Exercise 2 (Identification of Legacy Parts and Their Condition) List the available legacy codes corresponding to the
subsystems of the coupled system, and assess their characteristics and overall condition.

During this exercise, consider the following questions: Do all the subsystem parts exist? Will new ones have to be
developed? What legacy codes will play the part of which constituents? For some constituents, are there multiple legacy
codes under consideration for inclusion? In what condition are the constituent codes? Are they robust? Are they highly
portable? How easy is it to build an executable from each constituent’s source code?

A coupled system is more than the sum of its parts, but high-quality parts are essential. Legacy codes often build from
source and work “well enough” for their core developers and users, but making one part of a larger system is expanding
its user base to people unfamiliar with its foibles. Hardening all of the constituent codes to include error handling and
shutdown procedures (with meaningful explicatory error messages!), documentation (at a minimum prologues for each
function or routine explaining its argument list, what it does, and how it handles exceptions), and porting to the coupled

833

system’s target set of compilers or operating systems. Arriving at a consensus on how the coupled application will be built
from source is wise, as the build mechanism (e.g.,make with autoconf) can then be implemented in the constituent
codes. At this point, it is also important to formulate a strategy for avoiding code forks that can occur between the version
of the legacy code maintained by its core developers and the version to be used in the coupled system.

Another issue worth considering early is implementation language(s). In how many languages will the coupled system
be implemented? How many interlanguage barriers must be surmounted, and between which languages? Languages
such as C, C++, Python, and Java have interoperability mechanisms, either directly or via C. However, Fortran,
which is frequently used in scientific applications, may pose interoperability problems. Fortran 77 is immediately
interoperable with C, and via it may be linked to other languages; this is due to Fortran 77’s call-by-reference
(CBR) standard in which function or subroutine argument data is provided as a memory address reference. The
Fortran 90/95 standards, however, do not restrict themselves to CBR; and the only language interoperability solution
is a compiler-by-compiler glue layer such as CHASM (Rasmussen et al. [2006]). The Fortran 2003 standard has
a BINDC attribute that allows users to get compiler-generated C bindings for variables declared with this attribute
(ISO/IEC Joint Technical Committee 1, Subcommittee 22, Working Group 5 [2004]);BINDC is now supported by a
number of Fortran compilers (Chivers and Sleightholme [2007]). One solution for language interoperability that supports
all the aforementioned languages, including Fortran variants and supports datatypes used in scientific computing (e.g.,
complex numbers and multidimensional arrays) is Babel (Dahlgren et al. [2004]).

In how many executables will the system be implemented—single or multiple? Single-executable applications are easier
to launch and control, but combining multiple codes into a single executable may lead to symbol clashes during the linking
stage that must be resolved. A multiexecutable approach minimises this risk but poses other questions: Will the multiple
executables interact directly (e.g., message-passing or sockets) or via data files? If one executable fails, how should the
rest of the system respond?

Large systems frequently possess sufficient computational complexity to warrant one or more forms of parallel computing
to accomplish their work with reasonable turnaround time. Will parallel computing be utilised? If so, what parallelisation
mechanism(s)—MPI, OpenMP, and so forth—and in which constituents?

Exercise 3 (Constituent Data Dependencies)List the input/output data each constituent reads and writes from and to
files.

This exercise is the first cut at identifying interconstituent couplings. It also gets one to “draw a box” around the coupled
system and decide what the eventual set of inputs/outputs the coupled system will read/write from/to files. At this point
one should ask the following questions: Is this set of input/output data sufficiently complete that outputs from constituents
can be mapped onto inputs of others and the system might be prototyped using file-based coupling? Once the coupled
system is constructed, what willits file inputs/outputs be? Given this set of inputs/outputs for the coupled system, what
data will be used to initialise and drive it, and how might its output data be evaluated against corresponding observational
or experimental data?

3.2 INTERMODEL DATA DEPENDENCIES

If the results of Exercises 1 and 2 do not yield immediate and complete solutions to all of the coupling problems for the
system, it is time to analyse the system’s coupling relationships. These exercises will identify all of the couplings present
in M and their nature.

Exercise 4 (Constituent Domain Table)Make an N × N table whose rows and columns correspond to theN
constituents in the system. Using the same ordering, fill in the descriptions of the constituents’ domains as labels to
the rows and columns of the table. For the(i, j)th cell, determine whether the overlap domainΩij is empty or nonempty,
marking cells consistently. Note this table is symmetric; the results of the(i, j)th and(j, i)th cells are identical. One
needn’t bother with the cells withi = j, as they are comparing a constituent’s domain with itself.

This identifies which of theN(N −1)/2 potential the first-order overlap domains forM are nonempty and is an indicator
of coupling complexity. It also simplifies searches for multipartite couplings.

Exercise 5 (Constituent Data Diagram)On a whiteboard or (large!) piece of paper, draw a circle representing each of
the constituents, labeling it the same way as in Exercise 4. In each constituent’s respective circle, describe the spatial
domainΓi, its boundary∂Γi, and the model time period the constituent is active. List the state, input, and output variables
φi, αi, andβi, respectively.

Inspection of this constituent data diagram combined with the constituent domain table from Exercise 4 will identify all
the system’s coupling relationships. Within each constituent, compare its input, output, and state variables; intersections

834

between these sets identify potential implicit couplings ifthis constituent’s domain also intersects with that of a
constituent with corresponding state/input/output variable set intersections. For each pair of constituents whose domains
intersect, compare their outputs with the other’s inputs. Do these sets intersect, or is there a known natural law
relationship connecting some of the output variables to the other’s input variables? the answers will identify the coupling
transformationsTij . If, among some of these pairs of constituents, their states are exposed as input/output variables over
the same region and in time, there is an implicit coupling relationship that will require special attention in the form of a
solverSij .

Exercise 6 (System Graph)Draw a graphG of the coupled system to be built. Start by using a circle to represent
each constituent. Next, use the results of Exercises 4 and 5 to draw directed edges (arrow pointing from the provider to
consumer) between constituents that have bipartite explicit couplings, an undirected edge (line segment with no arrows)
for bipartite implicit couplings.

This exercise allows the application of graph theory (Diestel [2006]; Larson [2009]) toG and the coupled system it
represents. It raises and allows one to answer the following questions: How many constituents are being coupled, and
how are they connected? How many couplings are there? Are the couplings explicit or implicit? Are there feedbacks
(corresponding to directed loops connecting a constituent to itself via other constituents) present in the system? Are there
vertices with arrows exclusively pointing in (out) to (from) them, corresponding to a sink (source)? If so, these are parts of
the system that may be separated and run off-line, with sinks (sources) run after (before) the rest of the system, accepting
inputs from (providing outputs to) the rest ofM.

The system graph simplifies the search for multipartite couplings. Annotate each edge in the graph from Exercise 6 with
the names of the variables under exchange in the corresponding coupling. To search for multipartite explicit couplings,
look at each vertexi that has multiple edges directed into it, and look at the sets of variables associated with each edge. If
common variables are found, this is a potential multipartite explicit coupling directed intoi—to be confirmed by looking
for intersections between overlap domains. Any instance in which a constituent has undirected edges directly connecting
it with two or more distinct constituents is a potential multipartite implicit coupling. Examine each of these clusters,
identifying them by the number of parties participating in the implicit coupling, representing this multipartite coupling by
a shaded blob—ahyperedge—encompassing their associated vertices inG.

Exercise 7 (Coupling Frequency)Copy the system graphG constructed in Exercise 6. Label each vertexi with the
timestep∆ti (if fixed) or the range of values it takes in the current legacy code. Estimate as best possible the likely time
interval∆tij between coupling events, labeling the edge corresponding to this coupling.

Consider whether∆ti is likely to change (and how) in a coupled model use case. Label each edge or hyperedge indicating
whether the coupling is scheduled or threshold-driven. For scheduled coupling, include estimates of the likely time interval
between coupling events∆tij ; note that∆tij may be hard to estimate without running the constituentsCi andCj coupled
together, since values of∆tij are frequently determined on grounds of numerical stability and quality of solution. For
threshold-driven coupling, try to estimate the likely timescale over which coupling events will be spaced.

Exercise 8 (Coupling Data Volume)Copy the system graphG constructed in Exercise 6, and annotate each vertexi
with the data volumes of the state, input, and output vectors(Ûi, V̂i,Ŵi) for the associated constituentCi. Label each
edgeij with the data volume transformed in the coupling process.

For each constituent or coupling, what is the ratio of the amount of data shared in coupling interactions to the amount of
data used to compute internal state (namely, eqns. (6) and (7), respectively, in Larson [2009])? If these ratios are low, it
may be possible to implement coupling mechanisms that rely on data copying, thus reducing the amount of modification
of the legacy constituent codes. If these ratios are high, it might be necessary to rely on a more invasive approach such as
a field data registry or even reorganising how a legacy constituent code lays out its data.

Exercise 9 (Agglomeration)Study the results of Exercises 3–8 and look for output redundancy, that is, instances in
which a constituent produces the same output (i.e., fields, times and locations) for multiple consumers.

If a constituent is producing the same data for multiple consumers, is it possible to do this once? If so, there may be
opportunities for coalescing some of these into a single output by introducing another constituent called acoupler. An
excellent example of a system whose coupling overhead is reduced through introduction of a coupler constituent is CCSM;
a thorough discussion of the CCSM coupler is given by Craig et al. [2005], and an analysis of its coupling relationships
can be found in Section 4 of Larson [2009]. One can determine whether the system is better recast by introducing one or
more couplers to reduce the overhead imposed on the “science” constituents by adding any couplers that might be useful
and repeating Exercises 5–8 to evaluate this strategy.

At this point, all the system’s couplings have been identified and classified as explicit or implicit, and the spatiotemporal
data relationships between the parties in each coupling have been identified.

835

Exercise 10 (Coupling Transformations)For each bipartite coupling between constituentsCi andCj, identifyFij and
Gij and how these operations might implemented and ordered. For implicit couplings, think about how the solverSij

will be implemented. For each instance of merging, think about how its merge transformationM will be constructed, and
how its operations might be ordered. In all cases, how is the timet handled?

Exercise 11 (Estimation of Throughput) Assemble any performance data available for the constituents that have been
implemented. If there is no data for the configuration (timestep, spatial resolution, parameter settings) for which the
constituent is likely to be run as part of the coupled system, gather appropriates performance statistics. If some of the
coupling transformations are already implemented, gather the same performance data.

If these performance figures can be obtained for all of the constituents, it will be possible to estimate best-case scenarios
for model throughput, that is, how much coupled model time may be simulated in a given interval of wall-clock time. If
the couplings are all scheduled (good) or periodic (better) or fall within a single coupling cycle (ideal), this task will be
easier than for threshold-driven coupling. If performance data for the coupling transformations are available, this data
will improve any throughput estimates. Repeated timings for the constituents will allow estimation of mean execution
time and its variance; these statistics may be used later in Monte Carlo simulations to estimate coupled model throughput.
Timing statistics may also be used to estimate system-wide and per-constituent coupling overhead (namely, eqns. (11)
and (9), respectively, in Larson [2009]).

3.3 COPING WITH CONCURRENCY

The analysis techniques developed thus far are applicable to a uniprocessor (von Neumann) architecture. In systems
where parallel computing will be employed, extensions are required to support some types of concurrency. For purely
shared-memory parallelism (SMP), the system still has a single address space, and all of the exercises can be used
as-is. For distributed-memory systems, complications arise and must be handled. The first issue is that concurrent
execution of constituents is possible, engendering problems of where on the multiprocessor system constituents execute
(process composition), where coupling transformations occur, interconstituent parallel data transfer or redistribution, and
system load balance. The second complication is domain decomposition of coupling data and the concomitant issue of
parallelisation of coupling transformations.

In a serial composition, the global processor pool is kept intact, and{C1, . . . , CN} share it, running in succession,
interleaved between necessary coupling transformations. In a parallel composition, the global processor pool is divided
into N cohorts, each constituent runs on its own cohort, and coupling operations betweenCi and Cj are performed
on the union of their cohorts or subset thereof. Serial compositions are easier to understand, and performance
analysis is straightforward. A disadvantage to serial compositions, however, is that poor parallel scalability of one
or more constituents can quickly limit parallel coupled system throughput. Parallel composition allows cohorts to be
sized according constituent scalability but complicates load balance, and interconstituent data dependencies can cause
constituents to stall awaiting data from other constituents.

Distributed-memory parallelism in any given constituent means its domainΓi and input, output, and state vectors are
decomposed across a set ofKi processors—called acohort—using the parallel decomposition operatorPi(·); e.g.,

Pi(Γi) = {γ
(0)
i , . . . , γKi−1

i }, whereγ
(m)
i is the portion ofΓi residing on themth processor in the cohort. Similarly,

(û
(m)
i , v̂

(m)
i , ŵ

(m)
i) are the portions of the state, input, and output vectors residing on processorm. Thus, any coupling

transformation is parallel; that is,Tij : (ŵ
(0)
j , . . . , ŵ

(Kj−1)
j) → (v̂

(0)
i , . . . , v̂

(Ki−1)
i). A parallel coupling transformation

is Tij = Fij ◦ Gij ◦ Hij , whereHij represents parallel data transport. Implementing these parallel transformations is
challenging; a good example of a complete implementation is given by Jacob et al. [2005], and a detailed discussion of
implementations ofHij is given by Bertrand et al. [2006] and references therein. The same logic is applicable to implicit
and multipartite coupling transformations.

How does one apply the analysis outlined in this paper to a parallel system? Admittedly, with considerable difficulty. All
of the exercises must now include some recognition of how a constituent is parallelised, and in many cases two constituents
that are coupled may be coupled only via subsets of their respective cohorts. Thus, coupling data volumes and overheads
must be assessed on a processor-by-processor basis. For systems using parallel composition to execute constituents, the
(wall-clock) frequency of coupling operations must be timed to mesh well with all coupling partners so as to minimise the
aforementioned data-dependency-driven stalls. Parallel performance data must be collected for each constituent’s likely
parameter settings and processor counts, and these data folded into any throughput estimates, and used to support efficient
mapping of constituents to cohorts. Extension of this analysis technique to parallel systems will require tools to automate
the exercises described in this paper—an area for future work.

836

4 CONCLUSIONS

I have presented a set of exercises and questions developers should address early in the requirements-gathering and
design process. The exercises are derived from experience working on large multiphysics simulation projects and from a
theoretical framework for describing coupled systems. Modified or extended to suit a particular coupling problem, they
provide analysis tools for understanding a system’s coupling properties and, pursued to their logical conclusion, methods
for estimating the system’s likely performance. I hope they will accelerate the development process for coupled systems
and encourage more researchers to undertake model development of complex systems “from the ground up.”

Future areas of work include application of this analysis to a wide variety of existing multiphysics and multiscale systems,
which will provide opportunities for enhancing the technique; expansion of the method to better support analysis of
parallel systems; and investigation of techniques for automating the analysis and performance estimates.

ACKNOWLEDGMENTS

This work was supported by the Office of Advanced Scientific Computing Research, Office of Science, U.S. Department
of Energy (DOE), under Contract DE-AC02-06CH11357. I thank the Department of Theoretical Physics of the Research
School of Physical Sciences and Engineering for hosting me as a visiting fellow.

REFERENCES

Bertrand, F., R. Bramley, D. E. Bernholdt, J. A. Kohl, A. Sussman, J. W. Larson, and K. B. Damevski. Data redistribution
and remote method invocation for coupled components.Journal of Parallel and Distributed Computing, 66(7):931–946,
2006.

Chivers, I. D. and J. Sleightholme. Compiler support for the Fortran 2003 standard.ACM Fortran Forum, 26(2):25–27,
2007.

COMSOL, Incorporated. COMSOL Web site.http://www.comsol.com, 2009.

Craig, A. P., B. Kaufmann, R. Jacob, T. Bettge, J. Larson, E. Ong, C. Ding, and H. He. cpl6: The new extensible high-
performance parallel coupler for the community climate system model.Int. J. High Perf. Comp. App., 19(3):309–327,
2005.

Dahlgren, T., T. Epperly, and G. Kumfert.Babel User’s Guide. CASC, Lawrence Livermore National Laboratory, version
0.9.0 edition, January 2004.

Diestel, R.Graph Theory. Springer, New York, third edition, 2006.

ISO/IEC Joint Technical Committee 1, Subcommittee 22, Working Group 5. Information Technology–Programming
Languages–Fortran–Part 1: Base Language. Standard Definition ISO/IEC 1539-1:2004, International Standardization
Organization, Geneva, Switzerland, 2004.

Jacob, R., J. Larson, and E. Ong.M × N communication and parallel interpolation in ccsm3 using the model coupling
tookit. International Journal of High Performance Computing Applications, 19(3):293–308, 2005.

Joppich, W., M. Kurschner, and the MpCCI Team. MpCCI - a tool for the simulation of coupled applications.Concurrency
and Computation: Practice and Experience, 18(2):183–192, 2006.

Larson, J. W. Ten organising principles for coupling in multiphysics and multiscale models.ANZIAM Journal, 48:
C1090–C1111, 2009.

Larson, J., R. Jacob, and E. Ong. The model coupling toolkit: A new fortran90 toolkit for building multi-physics parallel
coupled models.Int. J. High Perf. Comp. App., 19(3):277–292, 2005.

Lethbridge, P. Multiphysics analysis.The Industrial Physicist, 10(6):26–29, 2004.

Michopoulos, J. G., C. Farhat, and J. Fish. Modeling and simulation of multiphysics systems.Journal of Computing and
Information Science in Engineering, 5(3):198, 2005.

Rasmussen, C. E., M. J. Sottile, S. S. Shende, and A. D. Malony. Bridging the language gap in scientific computing: The
CHASM approach.Concurrency and Computation: Practice and Experience, 18(2):151–162, 2006.

837

http://www.comsol.com

	INTRODUCTION
	ANATOMY OF A COUPLED SYSTEM
	CHECKLIST
	SYSTEM INTEGRATION SOFTWARE ENGINEERING ISSUES
	INTERMODEL DATA DEPENDENCIES
	COPING WITH CONCURRENCY

	CONCLUSIONS

