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Abstract: A new method for analysing neurite structure in 2D microscopy images is presented. Detected 
neurite structure is converted into a graph representation and grown from detected cell bodies using a graph-
based version of the watershed transformation. In doing so, various annotations of neurite complexity and 
morphology are characterised to aid studies of neuronal behaviour. We present the results of our algorithm on 
example images of neurite outgrowth.  
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Figure 1: A microscopy image of a 
single neuron. 

1. INTRODUCTION 

Analysis of neurite structure is a vital component of the drug discovery process (Kim et al, 2006). Such 
analyses give researchers the ability to identify compounds that impact on neuronal electrophysiology. 
Researchers are interested in changes to the length, shape and complexity of neurite structure. Semi-
automated approaches for detecting and quantifying neurite structure are commonly used to this end 
(Meijering et al., 2004). In high content analysis situations, however, semi-automation can be impractical. 
Xiong et al. (2006) present an automated approach to detection and quantification of neurites which produces 
image-wide quantification, but not at a cellular level. 

In this paper, we present an automated approach to the analysis and quantification of detected neurites. Our 
procedure uses the watershed algorithm (Soille, 2003, Sect 9.2) on a graph derived from detected neurites 
and their cell bodies. The watershed algorithm is commonly used in image analysis applications on 2D and 
3D images. The watershed can be similarly applied to more arbitrary graph structures. For example, Wegner 
et al. (1998) present a region-merging technique that applies the watershed transformation to a graph where 
the vertices are regions in a 2D image. Our approach associates neurite trees with a parent cell body. In the 
process of growing trees it collects various measures of length, width and complexity such as degree of 
branching. The methodology described in this paper forms the basis of the software package, HCA-Vision, 
used by, for example, Vallotton et al. (2007) to analyse neurite branching in cultured cortical neurons. 

2. METHOD 

2.1. Pre-Processing and Feature Detection 

Typical microscopy images of neurite structure contain two classes of objects: the cell bodies (both the 
cytoplasm and nucleus) and neurites. Both of these object classes are marked by a single fluorescent stain. 
The images being analysed in this application are 2D grey-scale. 

Segmenting the cell bodies is the starting point of our approach. A pre-processing step of a morphological 
top-hat (Soille, 2003, Sect 4.5) is used to flatten the background. The size of the square structuring element 
for the top-hat is user supplied and is chosen to be greater than the radius of any cell body. We now remove 
the neurite structure in the image using a morphological opening (Soille, 2003, Sect 4.1) with a polygonal 
structuring element. The radius of the structuring element is chosen to be greater than the thickness of any 
neurite in the image. The image is then thresholded using a 
method that finds a threshold based on gradient strength 
information similar to that proposed by Weszka and 
Rosenfield (1979). A bivariate histogram of Sobel gradient 
versus grey level is calculated. The average gradient 
strengths for each grey-level are treated as a histogram. An 
input parameter then determines the quantile of the 
distribution to be used as the threshold. 

To segment the neurites, we use the multiple directional non-
maximum suppression (MDNMS) technique proposed by 
Sun et al. (2006). The result of this technique is skeletonised 
(Soille, 2003, Sect 5.4) using 4-connectivity. Any neurite 
structure which lies inside the cell bodies is removed from 
the image. The sensitivity of the MDNMS approach can lead 
to over-segmentation of neurite structures. These 
inaccuracies manifest as small barbs in the skeleton which 
can be pruned by a debarbing process which removes barbs 
with length less than a user supplied threshold. 

2.2. Neurite Segments 

We now divide the skeleton of neurite structure into unique neurite segments. A segment is a linear section of 
neurite structure between two intersection or branching points. This is done by first finding intersection 
points in the 4-connected skeleton. An intersection point is characterised by having more than two 4-
connected neighbours. Intersection points are then removed from the skeleton and in doing so the neurite 
structure is divided into segments which remain 4-connected. Each segment is now given a unique label. 
Figure 2 shows an example image of individual segments detected for the neurites in Figure 1. For this 
example, the cell body and neurites were first segmented using the approach described in Section 2.1. 
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Figure 2: Linear features 
extracted from the image in 
Figure 1. Unique segments 

are colour coded differently. 

 

Figure 3. The two neurite trees 
extracted from Figure 1, colour 

coded in red and green. 

 

Figure 4. The branching layers derived from Figure 
1, primary branches are green, secondary branches 

are pink and tertiary branches are grey. 

2.3. Neighbourhood Graph 

A graph of neighbourhood relationships for neurite segments is now 
built. We first morphologically dilate (Soille, 2003, Sect 3.3) uniquely 
labeled intersection points, described in Section 2.2, with a 3 x 3 
structuring element so that they overlap the ends of neurite segments. 
Neurite segments which overlap a common intersection point are 
considered neighbours. This information is initially contained in a 
bivariate histogram of neurite segments versus intersection points. 
Non-zero entries in the histogram indicate overlaps between segments 
and intersection points. A linked list is created by scanning across each 
row of the histogram, corresponding to an intersection point, and 
finding non-zero entries indicating neighbourhood relationships 
among segments. 

We now find the segments which are touching cell bodies. We refer to 
these as `root' segments. We firstly thicken the labeled cell bodies so 
that they overlap root segments. A thickening is a dilation that 
preserves an object's label (Soille, 2003, Sect 5.3). Again, we use a 
bivariate histogram to store the overlap information. Non-zero entries 
correspond to root segments for a particular cell body. 

2.4. Tree Growing Using the Watershed Algorithm 

At this stage we associate all neurite segments with a neurite tree. A neurite tree is a connected neurite 
network extending from a single root segment. Figure 3 shows the two neurite trees, in red and green, for the 
image in Figure 1. We use the watershed algorithm to derive the association. Typically, in image analysis 
applications, the watershed is performed on an image, called the segmentation function, which highlights 
object boundaries. A set of unique seeds are grown on the segmentation function using a priority queue. 
Seeds are placed in the queue and neighbouring pixels are added with priority given to those with the lowest 
value in the segmentation function. Pixels are repeatedly taken from the top of the queue and added to the 
object defined by the pixel's neighbouring seed. 
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Figure 5: (a) A microscopy image of multiple 
neurons. (b) An image depicting the 

relationship between neurons and their neurite 
structure. Neurons and their neurite structure 
are coded with the same colour. (c) An image 
depicting the branching layer assignments. 

Primary branches are green, secondary 
branches are pink and tertiary branches are 

grey. (d) Branching layer assignments 
produced by NeuronJ 

We use the watershed methodology to grow neurite 
trees. The framework for the watershed is, however, 
different to that which is used for 2D images. 
Instead we have nodes of a graph instead of pixels. 
The nodes are the individual neurite segments and 
our seeds are the root segments as found in the 
above section. Root segments are initially put in a 
priority queue and neighbouring segments are added 
with priority given to segments with the highest 
average brightness. The average brightness is 
calculated over the pixels that form the skeleton of 
the neurite segment. Brightness was chosen as the 
priority as it is a key visual indicator for 
determining the primary and non-primary branches 
of the neurite trees. Other criteria for the priority 
could be used such as the relative orientation of the 
segments. See Section 2.5.2 for further details on 
primary branches and branching layer. Neurite 
segments are repeatedly taken from the top of queue 
and associated with their neighbouring neurite tree 
until all segments have been removed from the 
queue. 

2.5. Neurite Segment and Neurite Tree 
Quantification 

Various measurements can be accumulated for each 
neurite during the tree growing process. These 
measurements can in turn be accumulated on a per 
neurite tree or per cell basis. It is also common to 
report measurements on a per image basis. There are 
two groups of measurements collected during the 
watershed process: those relating to neurite length, 
width or brightness and those relating to neurite 
complexity. 

2.5.1 Length, Width and Brightness 
Length measurements are heavily used by 
researchers using microscopy images of neurite 
outgrowth. Before the tree growing process is 
initiated, the length of each neurite segment is estimated (Dorst, 1987). The average width of each segment is 
also computed using the method proposed by Lagerstrom et al. (2008). The average brightness of the 
segment is computed not only to guide the watershed process, but as a reportable measure in itself. As each 
neurite segment is removed from the queue we can accumulate the length back to the cell body for the 
segment, the longest path back to the neuron body for the neurite tree and the total length of the neurite tree. 
In a similar fashion, the average width of the neurite tree and the total area of the neurite tree are 
accumulated. The average brightness and integrated intensity of the neurite tree are accumulated as the tree 
growing progresses. Once the trees have been grown, neurite coverage area can be calculated. Neurite 
coverage area is defined by the area of the convex hull of a neurite structure. 

2.5.2 Complexity 
A variety of neurite complexity measures for describing neurite morphology are also collected via the tree 
growing process. Neurites display behaviour where a dominant or primary branch extends from a neuron 
body with secondary branches extending from the primary branches and so on. On a per neurite scale, we 
refer to this as branching layer. Root segments are given a primary branching layer, which is coded as 1. As 
segments are removed from the queue, a neurite segment inherits its parent's branching layer if it is the child 
segment with the highest average brightness. The remaining child segments are given a branching layer equal 
to their parent's branching layer plus one. Figure 4 shows the branching layer assignments for each neurite 
segment in Figure 1. The average branching layer per neurite tree is accumulated as the tree is grown. The 
situation where a neurite segment has more than one offspring is a branching point. The number of branching 
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Figure 1 Figure 5 

 green pink grey red blue black 

L.max 123 89 150 194 59 108 40 

L.total 785 170 340 755 59 324 196 

N.roots 2 3 3 6 1 7 4 

N.seg 28 9 13 16 1 17 12 

N.ext 15 6 8 11 1 12 8 

N.branch 13 3 5 5 0 5 4 

BL.max 4 3 3 3 1 2 2 

BL.mean 2.0 1.4 1.5 1.5 1.0 1.2 1.3 

I.int 115475 10800 12979 58681 13290 30477 14476 

A.cover 14676 2611 8368 30771 640 5853 4305 

A.neur 961 294 456 1028 76 443 278 

Table 1: Per cell neurite outgrowth quantification results for the 
images in Figure~\ref{fig.eg1raw} and Figure~\ref{fig.eg2raw}. 

L.max: Length of longest neurite; L.total: Total length of neurite 
outgrowth; N.roots: Number of root segments; N.seg: Number of 

segments; N.ext: Number of extreme segments; N.branch: Number 
of branch points; BL.max: Maximum branch layer; BL.mean: 

Mean branch layer; I.int: Integrated intensity; A.cover: Neurite 
coverage area (area of the convex hull of neurite outgrowth); 

A.neur: Area of neurite outgrowth. 

points per neurite tree is collected. The number of extreme neurite segments i.e. those with no children is also 
collected. 

3. EXPERIMENTAL RESULTS 

The performance of the algorithm was assessed on images of embryonic cortical neurons from Sez-6 null 
mice. Analysis and quantification of these images underpins a study of the effect of deleting the Sez-6 gene. 
Images of the cultured neurons were captured from an inverted microscope. The images typically contained 
one or a small number of neurons. The results of our algorithm were compared to results achieved using the 
semi-automated solution, NeuronJ (Meijering, 2004). 

Figure 1 shows a subsection of one of the assessment images. The cell body was detected using the gradient 
strength based method described in Section 2.1. Linear features were detected using the MDNMS approach 
and are shown in Figure 2. Figure 4 shows the branching layer results described in Section 2.5.2. The branch 
layer assignments correspond exactly with those achieved with NeuronJ. Measurements derived from our 
method are shown in the first result column in Table 1. 

Figure 5(a) shows another 
image from the assessment 
images. In this example there 
are multiple neurons in the 
scene. Cell bodies were again 
detected using the gradient 
strength based method 
described in Section 2.1. 
Linear features were detected 
using the MDNMS approach. 
Figure 5(b) shows an image 
displaying cell assignment of 
neurite structure. Neurite 
structure is colour coded the 
same as its parent cell. In 
images where the neurite 
structure is non-overlapping, 
this is not an issue, but it is a 
feature of our assessment 
images. The results of our 
algorithm are identical to 
those produced by NeuronJ. 
Figure 5(c) shows the 
branching layer results. 
Figure 5(d) shows the 
branching layer results 
achieved using NeuronJ. 
There is an almost exact 
correspondence between the 
branching layer results. The 
only difference is the 
swapping of the primary and 
secondary branches stemming 
from the bottom right of the 
central large cell. In this case, the correct result is subjective. This outcome is typical of comparisons between 
our approach and NeuronJ on this set of images. Measurements derived from our method for this image are 
shown in Table 1. 

For an image of dimensions 512 by 512 pixels, on an Intel Pentium 4 with 2.66GHz CPU, the approach takes 
around 0.2 seconds. The time is heavily dependent on the density of features. In large images with dense 
neurite outgrowth and cell bodies, the approach can take up to 10 seconds. 
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4. CONCLUDING REMARKS 

We have presented a new method for analysing neurite structure in 2D microscopy images. The approach 
subjects a graph representation of detected neurite outgrowth to the watershed algorithm. We treat the cell 
bodies of the neurites as seed points in the watershed process. The process allows us to compile a collection 
of measurements annotating neurite complexity and morphology. Such measurements underpin biological 
research into neuronal behaviour. The results of applying this method to example images of neurite 
outgrowth demonstrate the effectiveness of the approach. 
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