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Abstract: In this paper, analyses of uncertainty in the results of modelling irrigation demands in two 
irrigation areas are presented. The Next GENeration IRRigation (NGenIrr) demand model has been used for 
the analyses. This model incorporates behavioural and biophysical irrigation demand factors and associated 
uncertainties. On-farm decision making is represented using compromise programming, where tradeoffs 
between conflicting objectives are modelled, e.g. when deciding on crop areas at the start of an irrigation 
season, the model chooses crop mixes that achieve a compromise between maximising gross margins and 
minimizing risk of suffering a water shortage during the season. In the NGenIrr model, behavioural factors 
affect crop areas and irrigation scheduling. Biophysical factors affect crop water usage, soil water balances 
and on-farm storage volumes.  

Several irrigation seasons with varying climatic and water availability conditions were simulated for 
Shepparton and Coleambally Irrigation Districts. After establishing satisfactory performance of the model for 
the two districts, the uncertainties in behavioural and biophysical parameters were each varied systematically.  
The measure used to determine the effects of these changes was the number of observed data points 
remaining outside the 90% confidence interval of the model outputs.   

The modelling results show that the contribution of uncertainty in demand estimates from uncertainty in 
behavioural and biophysical parameters are likely to vary from region to region. In annual cropping regions, 
uncertainty in human behavioural factors can play a more important role than uncertainty in biophysical 
factors. Thus for the Coleambally Irrigation District, where annual cropping dominates, the uncertainty in 
behavioural factors contributed more to the uncertainty in demand estimates. However, in the Shepparton 
Irrigation District, which is dominated by perennial and horticultural crops, uncertainty in biophysical factors 
can account for most of the uncertainty in irrigation demand estimates. 

The results for both districts showed that with minimal modelling uncertainty the number of points outside 
the 90% confidence interval was quite high: 43 and 47 for Shepparton and Coleambally respectively (out of 
60 points). For Shepparton, the number of outlying points decreases asymptotically to 19 as more and more 
uncertainty is added to the model. For Coleambally, the number of outlying points decreases to 5. 

Keywords: Irrigation demand modelling, modelling uncertainty, Shepparton, Coleambally, compromise 
programming 
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1. INTRODUCTION 

The impact of uncertainty in behavioural factors on irrigation demand is an important water industry issue. 
The industry would benefit from better characterization and estimation of uncertainty in irrigation demands. 
The term “irrigation demand” can vary in meaning depending on the context. For example, it can mean the 
“economic” demand for irrigation water, or the biophysical crop water requirement. In this paper, the term 
has been used in the context of water allocations and delivery at the irrigation system and catchment scales. 
In this context, we use the term irrigation demand to mean water orders by irrigators to the water supply 
authority. Irrigation demand can be modelled in several ways, which include empirical or time series 
approaches (Abu Rizaiza and Al-Osaimy, 1996), quasi-economic approaches, models based on individual 
behaviour, models based on crop water requirements under particular climatic conditions (which tend to 
ignore water trading) and a blend of the above (Leenhardt et al. 2004, Dinar and Letey 1996, Erlanger et al. 
1992). Traditionally irrigation demand has been estimated using biophysical factors, such as climatic 
conditions, crop types and crop growth stages. However, with the introduction of water markets, on-farm 
storage regulation and drought conditions, behavioural factors play an increasing role in determining 
irrigation demand (Zaman et al. 2006). These factors include farming objectives (e.g. maximize profits, 
minimize risks, etc.) and activeness (the willingness to collect and act on water-related information). Some 
models do incorporate economic drivers such as maximizing social benefit and agricultural gross margins, 
utilising water trade opportunities, and increasing water productivity. However, these models tend to simplify 
the biophysical processes. 

Another limitation of many irrigation demand models is the inability to incorporate uncertainties in model 
parameters. Often to assess modelling uncertainty, the user needs to conduct a Monte Carlo type of exercise 
where many (thousands of) model simulations are required. This can be a potentially costly exercise, 
especially if the models are complex and have relatively long runtimes or cover large areas, e.g. the Murray 
Darling Basin.  

We have developed a process based simulation model that incorporates behavioural factors and biophysical 
factors related to irrigation water demands. This Next GENeration IRRigation (NGenIrr) demand model also 
incorporates uncertainties in these factors to give stochastic model outputs. The model has been tested in 
several irrigation districts, including Shepparton (Zaman et al. 2008a) and Finley (Zaman et al. 2008b). 

In the next section a brief description of the NGenIrr model is provided. In the third section the case study 
irrigation sites are described. The simulation results are provided in the fourth section, followed by 
discussion and conclusion sections.   

2. THE NGENIRR MODEL 

Behavioural factors, such as the decisions of farmers regarding the use of irrigation water are key 
considerations in NGenIrr.  Due to the unpredictable nature of seasonal rainfall and changes in water 
allocations from water authorities, the behaviour of farmers can greatly affect their irrigation use. The 
amount of land farmers choose to irrigate depends on their propensity to take the risk that it will be a good 
year and they will receive sufficient rainfall and water allocations. Also the variable nature of soils, crop 
types, irrigation systems and on-farm storages adds to the complexity. The NGenIrr model tries to model this 
complexity through three modules: 

• Module A – crop mix module: calculates feasible crop areas based on farmer objectives and 
constraints using multi-objective linear optimization (using SIMPLEX method). 

• Module B – trade-off module: works out most likely crop areas from the feasible set based on 
weightings of farming objectives using compromise programming. This module also takes into 
account of uncertainty in the farm objective weightings. 

• Module C – crop water module: estimates the likely water order volumes, based on crop water 
requirements and soil water balances. This module takes into account of uncertainty in 
biophysical parameters. 

 

Behavioural factors are modelled by finding the compromise between two conflicting objectives (maximize 
gross margins and minimize risk of crop water-stress). The weightings on farmer’s objectives are input as a 
discrete distribution to represent varying degrees of irrigators’ risk-averseness. The relative weightings of the 
two conflicting objectives are a key component of compromise programming. Relative weightings represents 
how risk averse or profit oriented the water user might be. In NGenIrr, relative weightings are included as 
model parameters.  If given a relative weighting of 0.1, the model indicates that the farmer is risk averse and 
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Figure 1. Method of Capturing Uncertainty in Relative Weightings 
Frequencies in Trade-off Module (Module B) 

prefers to minimize chance of suffering a water shortage 10 times more than gross margins.  If given a 
relative weighting of 10, this indicates that the farmer gives 10 times more importance to maximizing gross 
margins than to minimizing chance of water shortage. 

The model parameters, set in an MS Access database, include crop, soil, irrigation and optimization 
parameters.  Crop parameters involve the sow dates, root depths, length of crop growth stages, and crop 
coefficients.  For each soil layer, several properties need to be specified: the depth of the soil layer, wilting 
point, field capacity, initial and saturated water content, and hydraulic conductivity. Irrigation parameters 
include scheduling method, trigger level, and application efficiencies. Drainage parameters include tile drain 
depth and spacing, start and end dates of tile drainage operation and hydraulic conductivities of soils in tile 
drain. Other model parameters include water entitlement volume, allocation probabilities, on-farm storage 
properties, on-farm delivery efficiency, time lag (in days) for water order to arrive at farm gate and delivery 
(or pumping) capacity. Further details about the model structure and procedures can be found in Zaman et al 
(2007, 2008a and 2008b). 

Optimization parameters are defined for several different allocation categories; normal, high, low. For 
example if it is a “low” allocation year, as defined by the model user, then the model will adopt the 
parameters given for the “low” allocation year (in Module A). This function allows for the fact that in low 
allocation years, different crop areas are irrigated, compared to normal allocation years.  

2.1. Uncertainties in Behavioural Parameters 

The NGenIrr model incorporates uncertainty in the behavioural parameters. The model requires as inputs a 
probability distribution of relative weights:  

weightObjective
weightObjective

Weightlative
2

1
Re =     (1) 

The relative weighting term is used as a measure of irrigator’s preference between the two objectives. The 
user needs to input a frequency distribution of relative weights (in tabular form) in the Access database. As 
shown in Figure 1 the distribution of frequencies for each relative weighting is defined by an expected 
frequency and a coefficient of variation value (CVHB) representing the uncertainty in the expected frequency 
(EF). The model assumes that the uncertainty in the relative frequencies follows a log-normal (LN) 
distribution with mean EF and a coefficient of variation (CVHB). CVHB represents human behavioural 
uncertainty in the NGenIrr model. The model uses this information to assign probabilities to the compromise 
solution crop areas. The appropriate value of the coefficient of variation is obtained during model calibration. 
The larger the value, the 
more uncertainty there is in 
the behavioural parameters 
of the model. 

In order to represent 
uncertainty in the frequency 
of relative weightings, a 
stochastic value is used. The 
value is sampled a user-
specified number of times 
(default = 100) from the log-
normal distribution 
represented by the two 
parameters provided by the 
user (expected frequency 
and CVHB). Therefore, if 100 
samples are taken, then there 
are 100 probability estimates 
for each of the relative 
weight frequencies. The 
model ensures that for each sample (replicate) set the sum of the probabilities add up to 1, (i.e. 100%): 

1, =
N

i
riRWfreq       (2) 
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valuestochasticRWfreqi _=      (3) 

)_exp(_ valuezvaluestochastic =      (4) 
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valuezSDimuvaluezEV __*5.0)log(__ +=    (6) 

5.0)__(__ valuezVARvaluezSD =     (7) 

)*1log(__ ii CVCVvaluezVAR +=     (8) 

Where: N = total number of relative weights; 

RWfreqi,r = rth replicate of the frequency (or probability) for relative weight i. 

prob = random number from standard normal distribution; 

mu = expected frequency (EF) of relative weight i; and 

CVi = CVBH of relative weight i. 

2.2. Uncertainties in Biophysical Parameters 

The uncertainty in the biophysical parameters is lumped together by using another coefficient of variation. 
This stochastic (multiplicative error) value is sampled from a log-normal probability distribution: LN 
(1,CVBP). CVBP is the coefficient of variation of the distribution and is a user input. The stochastic value is 
multiplied to the estimated water order volume in each timestep: 

rtCrtC MEWOWO *,,, =      (9) 

)_exp( valuezMEr =      (10) 

Where: WOC,t,r = rth sample (replicate) of water order at timestep t for compromise point C;  

WOC,t = best estimate of water order at timestep t for compromise point C estimated by the water 
order routines (in Module C);  

MEr = rth sample of the multiplicative error term, randomly sampled from LN(1, CVBP); and  

z_value = calculated as in equations (5) to (8) and in this case mu=1 and CVi is CVBP. 

The optimal value of CVBP is obtained during model calibration. For this biophysical multiplicative error 
term a user-specified number of samples (default sample size is 100) is taken from the log-normal 
distribution. In the default case of 100 samples, the 100 error values are multiplied to the best estimate of 
water order to give 100 water order estimates for each compromise crop mix in each timestep. 

As a result of incorporating these two sources of uncertainty, the model produces a distribution of water 
demand in each time step. This set of expected water orders (EWOt,r) is obtained in each timestep by 
combining the water order replicates for each compromise point (WOC,t,r) with the sample frequencies of 
each compromise point (CPfreqC,r): 

=
C

rCrtCrt CPfreqWOEWO
1

,,,, .     (11) 

=
I

i
rirC RWfreqCPfreq .,,     (12) 

Where: EWOt,r = rth sample (replicate) of expected water order at timestep t;  

WOC,t,r = rth sample of water order for compromise point C at timestep t; and 

CPfreqC,r = rth sample of frequency (probability) for compromise point C, which is obtained by 
summing the relative weight frequencies associated with that compromise point. This can 
be one or more (up to I) relative weights (I<= number of relative weights defined by the 
user). 

619



Zaman et al., Impact of Uncertainty in Behavioral Factors on Irrigation Demands  

Figure 2. Seasonal Allocations for Case Study Sites
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In the default case of 100 samples, for each compromise point the 100 water order estimates are multiplied to 
the 100 frequency values. The resulting set represents a distribution of expected water orders for the timestep. 
This distribution of water orders takes into account uncertainty in crop areas (arising from behavioural 
uncertainty) and uncertainty in biophysical parameters. This distribution is the main output from the NGenIrr 
model. 

In order to proceed to the next timestep, the user needs to specify a percentile water order that the model 
should select from the distribution of expected water orders. The default setting is the median (50th 
percentile) value.  

3. CASE STUDY SITES 

3.1. Shepparton Irrigation District  

Shepparton Irrigation District SID is located in the 
Goulburn-Broken Catchment in north Victoria. 
Irrigation water is supplied by Goulburn-Murray 
Water, primarily from Eildon Reservoir. The travel 
time for the water from the main storage to the 
district is about four days. The historical average 
delivery volume is around 174,000 ML/yr and 
average irrigated area is about 51,000 ha. Dairying 
is the dominant agricultural activity in the district. 
Other activities include horticultural cropping and 
mixed (livestock and grains) farming. The area has 
experienced drought conditions since 1997. Irrigation water order and allocation data were obtained from 
Goulburn-Murray Water. Climate data (daily rainfall and reference crop evapotranspiration (ETo)) has been 
obtained from SILO Data Drill for Lat, Long: -36.30, 145.30”. 

As shown in Figure 2, in the 5 irrigation seasons studied the seasonal allocation has not exceeded 100%. As 
shown in Table 1, during the 5 seasons analysed (2001 to 2006), the mean monthly irrigation demand (12,692 
ML/month) varied considerably (Coefficient of variation = 0.85).  

3.2. Coleambally Irrigation District (CID) 

CID is part of the Murrumbidgee Valley in NSW and receives water from the Murrumbidgee River. The 
district covers some 79,000 ha of intensive irrigation, 42,000 ha of irrigation/dry farms and 297,000 ha of 
outfall district stations delivering water supply to 473 farms owned by 364 business units.  

Rice is the prevalent crop grown in the region. Wheat and other crops are often planted in the rice off-season. 
The district produces a range of other crops, including; soybeans, maize, sorghum, sunflower, and faba 
beans, canola, barley, oats, lucerne, grapes, prunes and pastures (perennial and annual) for sheep and cattle. 

This area has also been suffering from extended drought conditions. Water order and allocation data was 
obtained from the CID website. Climate 
data was obtained from SILO Data Drill for 
Lat, Long: -34.80, 145.89". 

The seasonal allocations in Coleambally 
were considerably lower than those in 
Shepparton. This is mainly due to the 
different ways water resources are managed 
in Victoria and NSW. In general, water 
rights are more secure in Victoria, because 
the authorities try to ensure that 100% 
allocation is provided over two seasons. 
Thus in Victoria, allocations do not easily 
exceed 100%.  From 2001 to 2006, the 
mean monthly irrigation demand in CID 
(24,667 ML/month) varied considerably 
(Coefficient of variation = 0.88). 

Table 1. Case Study Site Details  

Feature Colembally Shepparton 

Area Normally 
Irrigated (ha) 

79,000 51,000 

Total Cropping 
Area (ha) 

297,000 81,750 

Entitlement 
Volume (ML) 

610,000 181,500 

Approximate 
water usage 

(ML/yr) 
400,000 200,000 

Main 
Agricultural 

Activities 

Rice, cereal 
crops, pastures 

Dairying, stone and 
pome fruit, mixed 

cropping and grazing 
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Shepparton Simulation Results
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Coleambally Simulation Results
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Figure 3. Simulation results for 5 irrigation season

4. SIMULATION EXPERIMENTS 

Both districts have been modelled as single 
mixed-farming enterprises for five irrigation 
seasons (2001 to 2006). The models were run at a 
daily timestep and results have been analysed on a 
monthly basis. Detailed information about the 
parameter values used in the simulations are 
provided at www.ngenirr.pbwiki.com. Both 
models were calibrated manually.  

4.1. Shepparton 

Figure 3 shows that reasonable simulation results 
were obtained for SID, except for the 2002/3 
season. The r2 value for the 60 data points is 0.73. 
There are 9 zero values in the observed data 
(mainly in June and July months) and 10 zero 
values in the model outputs (5 matching with 
observed values). The importance of these zero 
values is discussed in the next section. 

4.2. Coleambally 

Figure 3 also shows that reasonable simulation 
results were obtained for CID, except for the 
2005/6 season. The r2 value for the 60 data points 
is 0.70. There are 11 zero values in the observed 
data (mainly in June and July months) and 7 zero 

values in the model outputs (5 matching with observed values).  

After establishing satisfactory performance of the model for the two districts, the two CV values were varied 
systematically.  This was done to add uncertainty (or noise) to the model outputs from the two main 
parameter sets: biophysical (CVBP) and behavioural (CVHB). The measure used to determine the effects of 
these changes was the number of observed data points remaining outside the 90% confidence interval of the 
model outputs. As the uncertainty range of the model outputs increase, more and more of the observed data 
should fall within the specified confidence interval and thus the number of points remaining outside the 
interval should decrease. In this way, the importance of uncertainty in behavioural factors was determined. 

5. DISCUSSION 

The Shepparton allocations in the 2002/3 season (Figure 3) were considerably lower than the other seasons. 
As observed crop areas were not available it was not possible to determine the accuracy of the estimated 
model areas. Similarly the Coleambally allocations for the 2005/6 season were also unique compared to the 
other four irrigation seasons. Thus the model struggled to match the water orders for this season. However, 
due to r2 values equal to and greater than 0.70 and good approximation of irrigation demand trends, these 
results were considered adequate for the purposes of this paper.  

As shown in Figure 4, the results of the simulation experiments confirm that as modelling uncertainty 
increases, the number of observed data points remaining outside the 90% confidence interval decreases. The 
figure clearly shows that the response of the Shepparton model is quite different to that of the Coleambally 
model. First of all, it was observed that with minimal modelling uncertainty (CVHB=0.1 and CVBP=0) the 
number of points outside the 90% confidence interval was quite high: 43 and 47 for Shepparton and 
Coleambally respectively. For Shepparton, the number of outlying points decreases asymptotically to 19 as 
more and more uncertainty is added to the model. Due to the multiplicative error structure, the zero values 
estimated by the model do not have any error bars (confidence interval) and therefore increases in modelling 
uncertainty will not have an effect in these timesteps. Thus, for Shepparton the potential minimum number of 
outlaying points is 5 (10 zero model estimates minus 5 matching observed zero values). The potential 
minimum for Coleambally is also 5. Figure 4 clearly shows that the greater influence of behavioural 
uncertainty (changes in CVHB) allow the model to get closer to the potential minimum for Coleambally 
compared to Shepparton. Unlike the results for Shepparton, the profile of the curves for Coleambally 
continues sloping downwards as CVHB is increases.  
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Coleambally District: Number Observed Points outside 90% CL 
of Model Outputs
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Shepparton District: Number Observed Points outside 90% CL 
of Model Outputs
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Figure 4. Effects of Changing CVHB and CVBP on the 
number of observed points falling outside of 90% 

confidence intervals of model outputs 

If the upper and lower curves (CVHB = 0.1 and 1) are considered as edges of a windsock, then the influence 
of the two sources of uncertainty can be described qualitatively as follows. The greater the influence of 
uncertainty in biophysical parameters, the more the windsock will show “high winds”. Conversely, if the 

windsock indicates little to no wind, then 
uncertainty of behavioural factors 
contributes more to the uncertainty in 
demand estimates. 

6. CONCLUSIONS 

Two key sources of uncertainty for 
estimating irrigation demands are 
incorporated in the NGenIrr model: 
uncertainty in biophysical parameters and 
in behavioural factors. In this study, 
simulation experiments were conducted to 
determine which uncertainty plays a more 
important role in different irrigation 
systems. The results suggest that 
behavioural uncertainty is more important 
for annual cropping systems (like 
Coleambally) and uncertainty in 
biophysical parameters is more important 
in more permanent cropping systems (like 
Shepparton). 
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