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Abstract: The standard pest control methodology for insect pests in grain storage is fumigation with phos-
phine gas. However phosphine resistance is a serious problem which threatens Australia’s grain industries.
There are several questions regarding how to determine the most effective strategies for fumigation using
phosphine to prevent the emergence of resistant strains.

Linkage analysis and molecular techniques have provided strong evidence that resistance is conferred by two
genes on separate chromosomes for the insect species Rhyzopertha dominica. For this species resistance for
those homozygous with both copies of the sensitive gene has been determined to be well over 250x those with
no copies of the resistance genes, whereas there is a resistance factor of 2.5x to 30X if the resistance genes
are present in only one of the two locations, depending on which location. A further important question arises
as to whether single-locus population genetics models are adequate to give an accurate representation of the
population dynamics under fumigation or whether two-locus models are needed.

This paper describes the development of a two-locus model for the population genetics for R. dominica for
fumigation under a given concentration of phosphine gas. The mathematical model consists of nine sub-
populations, corresponding to the nine genotypes, modelled by a system of nonlinear ordinary differential
equations. These are solved numerically using standard techniques.

Using the model, some different fumigation strategies are investigated; for fumigation switched on for a
given period and switched off for a given period. The two-locus model is compared with a single-locus
model. Preliminary results of this model have identified situations where a single-locus model gives different
qualitative conclusions to the two-locus model.
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1. INTRODUCTION

Resistance to chemical treatments in stored grain insect pests is a potential major threat to the Australian grain
industry. Currently, phosphine treatments are the most effective control methods, however, pest resistance
to phosphine means that significantly higher concentrations of phosphine will be required to control insect
populations in the future and, in some cases, complete control may no longer be possible.

Control of the lesser grain borer, Rhyzopertha dominica, is particularly pertinent in Australia where a zero
tolerance to pests in export grain has been observed since the Export (Grains) Regulations were passed in the
early 1960s (Rees, 1998). The number of pest populations exhibiting resistance to phosphine has been slowly
increasing worldwide since it was first noted in the Food and Agriculture Organization’s (FAO) 1972/1973
global survey on pesticide resistance (Champ and Dyte, 1976). In Australia, White and Lambkin (1990) first
recorded a mild level of resistance in R. dominica in 1990. By the turn of the millennium, experiments had
shown that some Australian strains were highly resistant to phosphine, compared both to susceptible insects
and to the previously-discovered mildly-resistant strains (Collins, 1998).

Collins et al. (2002) discuss two observed resistance types, or phenotypes, currently found in Australian strains
of R. dominica. They begin with a null hypothesis of a single gene controlling resistance in both phenotypes;
the possibility of this monogenic inheritance arose in earlier work on a Brazilian strain of R. dominica also
exhibiting weak resistance (Ansell, 1992). The experiments conducted by Collins et al. (2002) give evidence
to reject this null hypothesis for both weakly and strongly-resistant beetles and conclude that phosphine re-
sistance in both phenotypes is controlled by multiple genes, at least one of which contributes a major factor
to resistance in each type. Resistance is characterised by incompletely recessive alleles on these major genes.
When a trait is specified by a recessive allele, an individual must possess identical copies of that allele for the
trait to be expressed in their phenotype. For incompletely recessive alleles, heterozygous individuals show a
limited expression of the trait — in this case, a lower level of resistance similar to susceptible insects.

A detailed genetic analysis at the molecular level by Schlipalius et al. (2002) confirms that there are two
positions, or loci, on different chromosomes, of the strongly-resistant strain that carry resistance alleles. Both
Collins et al. (2002) and Schlipalius et al. (2002) conclude that one of the genes determining resistance in the
strongly-resistant strain is also present in the weakly-resistant strain. More recently, Schlipalius et al. (2006)
propose that the gene shared between the weakly-resistant strain and the strongly-resistant strain (which they
label rph;) was responsible for the initial emergence of phosphine resistance in Australia. Selection of the
recessive allele for rph; under fumigation subsequently caused the selection of the recessive allele at an
additional, secondary resistance gene, labelled rph,. In the absence of rph;, homozygosity for this recessive
allele at rph, would convey only a modest survival advantage and heterozygosity almost no advantage at all
over susceptible insects. It is the presence of resistance alleles on both rph; and rph, that is responsible for
the strong level of resistance first noted in Collins (1998).

2. TWO-LOCUS MODEL

The mathematical model consists of nine ordinary differential equations for the nine genotypes; where we
denote N, as the total number of insects with both loci as the susceptible type, Ny, as those with the first
locus as the susceptible type and the second locus as the hybrid, through to N,, as the numbers with both loci
carrying resistance alleles. The differential equations are obtained by constructing an offspring table which
gives the proportions of offspring of the different genotypes for all the different mating combinations. The
complete set of equations for the nine genotypes in the two-locus inheritance model are given in Figure 1. The
parameters in the model that need to be specified are 3, the per-capita birth rate (assumed to be the same for
each genotype), and a(t), @y, (7) . . . @, (), which are the per-capita death rates for each of the nine genotypes.

Driscoll et al. (2000) have tabulated values of the intrinsic growth rate r = 8 — «, in the absence of fumigation,
for a range of temperatures and humidity values. We have used the value r = 0.392 as an indicative value
corresponding to a temperature of 24°C and humidity of 70%. The per-capita death rate, for all genotypes in
the absence of phosphine fumigation, is set to a value of @ = 1/13 per week for each genotype. This number
has been estimated from the reciprocal of the average life-span of R. dominica, which is given by Rees and
Rangsi (2004) as 13 weeks.

In the presence of fumigation the per-capita death rates are concentration dependent, such that the insects with
resistance alleles have smaller per-capita death rates than the susceptible insects. A separate per-capita death
rate has been defined for each of the genotypes in this model — for example, a, gives the number of deaths
per week, per female insect, of insects with the doubly susceptible genotype ss. Daglish (2004) measure the
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Two-locus model differential equations.
dN.
d:s :% (4Nss + 2Nps + 2Ngp + Nhh)2 — @ysNs
N _ B 2N N, 4N, 2N,1) (4N, 2N 2N, N, N,
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dN,
dtrs :% (2Nps + Npp + 4Nps + 2th)2 — rsNys
Nan _ B, 4Ny, + 2Nj,) (4N + 2N +2
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dN,
— = %NM (2N = Nyp) + Niog QN + 4Ny + Ny + 4Niy + 4N;,)
+ Nxh (4th + 4Nrs + Nhs + 2Nhr + 4Nrr) + th (4N_m' + 4Nsr + Nhr)
+ Npr (4Nss + 4Npg + Nppp) + 8 (Ngs Ny + Ny Nyg) — €N
dN,
dtrh :SEN (Npi + 2Nph + 2Npp + 4Npp) 2Nps + Npjp + 4Nps + 2Npp) — anNpp
dNy,
d;' =% (N + Npp + 4Ny + 2Nhr)2 — ag Ny
i _ B (N + 2N,y + 2Npy + 4Npy) (2Ngy + Ny + 4Ny + 2N N
dt —@ ( hh + rh t hrt rr)( sh t Npp + srt nr) — @nr Ny
dN,
dlrr :% (Nuh + 2Ny + 2Ny + 4Nrr)2 = @y Ny
where the total population N(¢) is given by
N = Nss +Nhs + NVA‘ + Nsh + Nhh + th + er + Nhr + Nrr~

Figure 1. The full set of nine differential equations for the 2-locus model.

concentrations for the population to fall to 50% of their original value, denoted LCs(, some of these genotypes
and their successive offspring. Remaining LCs, values were obtained from Collins et. al. (2002). All LCs
values were taken from controlled fumigations of duration 48 hours. An exponential relationship between
concentration and exposure time, as determined by Daglish (2004), and assuming exponential growth, is
used to determine « as @ = 1681og(2)C* /k, where k; = 0.8673 and k,, for the nine genotypes, have been
determined from the LCsy data, and are given in Table 1. However, this equation is based on controlled
laboratory experiments so the mortality rates for insects in the field will may be different. The resistance
factor, f, the ratio of LCs relative to the susceptible genotype. For the strongly resistant genotype (which has
the recessive gene in both locations) has a significantly higher valueof f than the weakly resistant genotypes,
with the recessive gene occurring in only one of the two locii. In Schlipalius et al. (2006) this was given as
greater than f = 240X, and later, in Schlipalius et al. (2008) as f = 616x, which is the value we adopt here,
see Table 1.

Table 1. LCs, values from the literature (Collins et al., 2002; Schlipalius et al., 2008; Daglish, 2004). Also
given are the resistance factor f which are the LCs, values relative to the LCs, values for the ss genotype, and
the estimated values for k, parameter for the per-capita death rate under fumigation.

Genotype ss,hs sh hh, hr Sr rs, rh T
LCsg 0.0017  0.0042 0.00563  0.0204 0.052 1.049
f 1 2.5 3 12 30 616
ki 0.2088 0.417 0.537 1.674  4.0908 50.019

The differential equations in Figure 1 were solved using the ODE45 solver in MATLAB. This is an adaptive
time-stepping method based on the Runge-Kutta method. Firstly, we look at a typical hypothetical control
strategy then we compare the results of this two-locus model with a single-locus model by aggregating the
nine genotypes into three roughly equivalent phenotypes.

3. RESULTS

In Figure 2 the nine genotype proportions, Ny (f)/N(t), Ng()/N(¢)...N,.(t)/N(t), where N(¢) is the total
population, are plotted against time, 7. In this scenario the fumigation time is over two weeks, occurring
at the second week. The population initially is assumed to consist predominantly of weakly resistant and
susceptible insects. To obtain the initial genotype proportions under this assumption, it was assumed that
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alleles for susceptibility and resistance were equally likely on the first locus, and that of all alleles present in the
population at rph, only 5% were the allele for resistance. It can be shown that these values produce an initial
proportion of the rr genotype of only 0.025. Additionally, using allele proportions allows the establishment
of Hardy-Weinberg equilibrium between the genotype proportions, as is demonstrated in Figure 2 for weeks
0-2.
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Figure 2. Genotype proportions, Ny (¢)/N(?)... N,(t)/N(¢), (ratio of numbers of each genotype relative to the
total population) under a hypothetical fumigation control strategy. Fumigation (shaded in plot) occurs at two
weeks and lasts for two weeks at a constant concentration of 0.075 mg1~!.

During the fumigation period of two weeks an idealised phosphine concentration of 0.075 mg1~! was applied,
which is 150% of the registered application rate in Australia in 2000 (Collins et al., 2000). We consider ideal
conditions where the concentration remains constant of the duration of the fumigation, i.e. no leakage from the
container. After fumigation, the three genotypes, rt, rs and rh dominated the proportions of the population, and
the rh genotype accounted for around half the population. These three genotypes had the highest resistance
factors. Most importantly it can be seen that the 1t genotype, associated with strong phosphine resistance, has
gone from a 2.5% presence in the population to close to 20%. This result explains how strong resistance might
have been selected for in R. dominica, as indeed it was by 1997 in Australia (Collins et al., 2002). Collins
et al. (2000) recommended higher concentrations be used to prevent the growth of the resistant strains; this
graph shows clearly the danger in ignoring this recommendation.

In Figure 3 a comparison is made of the two-locus inheritance genetics model with a possible single-locus
model of inheritance. Although it is now well known that phosphine resistance in Rhyzopertha dominica is
conferred by two genes many existing models of pest resistance employ only a single-locus approach. The
differential equations for single-locus inheritance are constructed using a similar approach to that used to
construct the two-locus inheritance model, and is explored extensively by Hoppensteadt (1975). The nine
genotypes from the two-locus model have been aggregated into three groups for a direct comparison with a
single-locus model. The aggregation is as follows.

e Susceptible type. The ss and hs genotypes are grouped (labelled S',) for comparison with the susceptible
homozygous genotype s in the single-locus model (labelled S ), and S is assumed to share the same
capita mortality rate as these two genotypes. S0 S» = Ny + Npg and S| = N;.

o Weakly resistant type. the genotypes rs, sh, hh, rh, sr, and hr are aggregated into the second group
(labelled H,) and are compared with the single-locus hybrid genotype (labelled H;). The per-capita
mortality rate for the single-locus hybrid type is the one corresponding to the resistance factor of f =
2.5, from Table 1. It may be argued that under a single-locus inheritance assumption, resistance would
be incompletely recessive. However, resistance factors for the hybrid type would be very close to that
for the susceptible type, so the f = 2.5 value from Table 1 is the most appropriate one to choose. So
here Hy = N,y + Ny, + Ny, + Ny, + Ny, + Ny, and Hy = Nj,.

o Strongly resistant type. The two-locus strongly resistant type rr (labelled R,) is compared with the
single-locus resistant genotype r (labelled R;), both using a mortality rate consistent with the resistance
factor f = 616. Here R, = N,, and R = N,.
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The R. dominica population is now considered to have been in similar conditions for long enough to establish
proportions of genotypes in Hardy-Weinberg equilibrium, assuming that the resistance allele on the first gene
accounts for 40% of alleles on this gene and that the resistance allele on the second gene accounts for 15% of
alleles on this gene. These values are chosen as an approximation to proportions of resistance types that have

been seen in field studies.
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Figure 3. Comparison of single-locus inheritance with two-loci inheritance for two different concentration
levels of phosphine. The top plots assume the application rate was the registered rate in Australia in 2000, with
(a) showing single-locus results and (b) the two-loci results after aggregation of genotypes. The bottom plots
simulate an under-dosage of phosphine, showing in (c) the single-locus results and (d) the two-loci results
after aggregation. Here S,, H», R, denote the proportions of the population corresponding to aggregation of
the 2-locus genotype into a susceptible, hybrid and strongly resistant groups, as described in the text, with
S 1, Hy and R, being the corresponding one-locus groups. Two concentrations were investigated; an idealised
concentration of 0.05mg1~! over 2 weeks and an ineffective concentration of 0.01 mg1~! over 2 weeks.

In Figure 3, plots (a) and (b) show the effects on the population proportions after applying a concentration of
0.05 mg 1" over 2 weeks, one of the previously registered application rates in Australia (Collins et al., 2000).
Plot (a) shows the results from the single-locus model S| to R;) and (b) the two-loci model after aggregation
of the genotypes S, to R;). In Figure 3, plots (c) and (d) emulate the situation where the applied concentration
rate is not reached within the storage facility0. This may arise through inadequate (or no) sealing of a silo or
incorrect application of the gas. The concentration over two weeks is chosen to be C = 0.01 mg1~! which is
20% of the previously recommended dosage from the year 2000, and could correspond to very leaky container
of to an area of the container which receives an inadequate dose due to poor flow conditions.

Both two-locus and single-locus models show the increase of the resistant proportions, but it is clear that
the single-locus model greatly exaggerates the rate of increase of resistant insects compared to the two-loci
model, as well as the rate of decrease of hybrids (H; compared to H;). This results, in the single-locus case,
in a post-fumigation population consisting entirely of resistant insects whereas plot (b) indicates that rather
the resistant insect proportion begins to decrease after fumigation under the (correct) two-loci assumption.

Under the inadequate-dose fumigation scenario the single- and two-loci models show similar qualitative be-
haviour. Both exhibit a sharp decline in the proportions of susceptible insects and indeed both models have
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a susceptible proportion of effectively zero after the first week of fumigation. Additionally, both models
exhibit rapidly-increasing proportions of heterozygotes, and comparatively very slowly-increasing popula-
tions of resistant insects. However, when fumigation ceases after two weeks the two-locus and single-locus
models give contrasting results. Note the sudden decrease in heterozygote proportions in the single-locus
case compared to the slight increase for the same in the two-loci case. More importantly, the single-locus
model over-exaggerates the proportions of both susceptible and resistant insects showing an increase in both
over time, while the two-loci model indicates that the resistant proportions are dwindling and the susceptible
proportion effectively zero.

In Figure 3, plot (c), the single-locus model results are shown and in plot (d) the two-loci model aggregated
results are shown. The single-locus model again exaggerates the rate of increase of the resistant proportions,
this time resulting in a proportion nearly 10 times that of the resistant proportion in the two-loci model by the
end of fumigation. The resulting post-fumigation overall proportions of the population are now completely
reversed in the single-locus model when compared to the two-loci inheritance results. Where the hybrids
make up over 90% of the population after fumigation when two-loci inheritance of resistance is assumed, it is
the resistant insects that comprise greater than 90% of the population under a single-locus assumption.

4. CONCLUSIONS

This study has described the development of a two-locus model for phosphine resistance in stored grain insects
and compared the two-locus model with a one-locus model. Complex resistance inheritance has driven the
creation of the more explicit two-loci based model. Both the models were run under equivalent conditions.
the results highlight The importance of incorporating two-locus inheritance in models used for investigating
suitability of different phosphine fumigation strategies.

As discussed by Collins et al. (2000), the old previous registered application concentrations of phosphine in
Australia, from 2000, appeared insufficient to control resistant strains of R. dominica; a conclusion supported
by the results of our model. However, we do note that our model is a simplified prototype, and that fur-
ther study and validation will be required before this model can be used to make reliable recommendations
regarding fumigation strategies. The mortality rates for insects in the field may not depend on phosphine con-
centration in the same way as for the laboratory experiments on which our mortality rates are based, so caution
should be exercised in interpreting results except to compare the effects of high verses lower ineffective con-
centrations. Our final model will also need to incorporate such influences as age-structure, temperature and
humidity effects on birth and mortality rates and stochastic effects for very small populations. Also, account
of leakage of phosphine from storage containers and sorption of phosphine into the grain needs to be taken
into account. A comprehensive validation of the model should be undertaken before the results can be re-
lied upon in practice. Nevertheless, the importance of including the appropriate two-locus genetics has been
demonstrated here.
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NOTATIONS AND UNITS
Symbol description
N(t) total population, at time ¢, relative to initial population
s, h, r susceptible, hybrid and resistant genotypes, at locus 1 or 2
Nss, Ngn, Ng» - number of insects of first three of the nine genotypes, relative to initial total population
B per-capita birth rate (weeks™!)
g5, X, Uy per-capita death rates for the first three genotypes, in weeks™!.
So, Hy, Ry towo-locus aggregated groups, susceptible, hybrid (weakly resistant and strongly resistant
S1,Hi, Ry one-locus groups, susceptible, hybrid and strongly resistant
LCso phosphine concentration required to time to reduce population to 50% of its original value
f resistance factor, defined as ratio of LCs values relative to ss genotype
REFERENCES

Ansell, M.R. (1992), The mode of inheritance of resistance to phosphine in two species of stored product
beetles. Ph. D. thesis, University of Reading.

545



Lilford et. al. Fumigation of stored-grain insects — a two locus model of phosphine resistance

Champ, B.R. and Dyte, C. (1976), Report on the FAO global survery of pesticide susceptibility of stored grain
pests. In FAO Plant Production and Protection Series, Number 5, 90-99.

Collins, PJ. (1998), Resistance to grain protectants and fumigants in insect pests of stored products in aus-
tralia. In Stored grain in Australia: Proceedings of the Australian Post-harvest Technical Conference.

Collins, PJ., Daglish, G.J., Bengston, M., Lambkin, T.M. and H.Pavic, H. (2002), Genetics of resistance
to phosphine in Rhyzopertha dominica (Coleoptera: Bostrichidae). Journal of Economic Entomology, 95,
862-869.

Collins, P.J., Daglish, G.J., Nayak, M.K., Ebert, PR., Schlipalius, D.I., Chen, W., Pavic, J., Lambkin, T.A.,
Kopittke, R.A. and B. W. Bridgeman, B.W. (2000), Combating resistance to phosphine in Australia. In E. J.
Donahaye, S. Navarro and J. G. Leesch (Eds.), Proceedings of the International Conference for Controlled
Atmosphere and Fumigation in Stored Products, Fresno CA, 593-607.

Daglish, G.J. (2004), Effect of exposure period on degree of dominance of phosphine resistance in adults of
Rhyzopertha dominica (Coleoptera: Bostrychidae) and Sitophilus oryzae (Coleoptera: Curculionidae). Pest
Management Science, 60(8), 822-826.

Driscoll, R., Longstaff, B. and Beckett, S. (2000), Prediction of insect populations in grain storage. Journal
of Stored Products Research, 36, 131-151.

Hoppensteadt, F. (1975), Mathematical Theories of Populations: Demographics, Genetics and Epidemics.
Philadelphia: Society for Industrial and Applied Mathematics.

Rees, D. (1998), Pest trends in the Australian grain bulk handling system. In Australian Postharvest Technical
Conference.

Rees, D. and Rangsi, T.V. (2004), Insects of Stored Products. CSIRO Publishing.

Schlipalius, D.I., Chen, W., Collins, PJ., Nguyen, T., Reilly, P.E. and Ebert, PR. (2008), Gene interactions
constrain the course of evolution of phosphine resistance in the lesser grain borer, Rhyzopertha dominica .
Heredity, 100, 506-516.

Schlipalius, D.I., Cheng, Q., Reilly, P.E., Collins, P.J. and Ebert, P.R. (2002), Genetic linkage analysis of the
lesser grain borer Rhyzopertha dominica identifies two loci that confer high-level resistance to the fumigant
phosphine. Genetics Society of America, 161, 773-782.

Schlipalius, D.I., Collins, P.J., Mau, Y. and Ebert, PR. (2006), New tools for management of phosphine
resistance. QOutlooks on Pest Management, 17, 52-56.

White, G.G. and Lambkin, T.A. (1990), Baseline responses to phosphine and resistance status of stored-grain
beetle pests in Queensland, Australia. Journal of Economic Entomology, 83, 1738-1744.

546





