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EXTENDED ABSTRACT

Creating networks of protected nature reserves is the
primary means of reducing biodiversity loss. The
principle focus of the reserve design literature is
on determining which sites to reserve to maximise
the number of species conserved. To each site is
attached species which become conserved when the
site is reserved. A good reservation policy is one
that conserves as many species as possible. Until
recently, most site selection models have been static:
they assumed that sites threatened by development
would be reserved immediately after the optimal plan
is determined. This rarely occurs in practice, often
because there are insufficient funds available when the
optimal plan is determined, or because not all sites
are immediately available to be reserved. But once
postponed, the reservation decisions might never be
implemented if the targeted sites become developed
first. Recently, dynamic models based on stochastic
dynamic programming (SDP) have been proposed
to solve the reserve selection problem. In these
models, unreserved sites can become irreversibly
developed each year with a given probability and
only a limited number of sites can be reserved each
year, due to budget constraints. The problem is to
design a dynamic reservation policy that results in
the maximum expected number of species conserved
at the end of the problem horizon. These models
are used to investigate the importance of the timing
of selections in conservation programs. Existing
models consider a random development pattern where
development probability for each site is independent
of the development status of neighbouring sites.
However, it is more likely that deforestation occurs
as a “contagion” process, in which deforestation in a
region begins when extensions to road networks make
the region economically accessible.

In this paper we propose improved SDP algorithms
that make use of a graph representation of the sites
network to address the reserve site selection problem

under this spatially explicit form. First, we present an
already existing model based on SDP and we propose
a new, exact, dynamic programming algorithm, with
which theoretical and experimental complexities are
assessed. Unfortunately, this exact method can only
be applied to small problems (less than ten sites),
when real-world problems may have hundreds or
thousands of sites. So, instead of exact methods,
heuristic methods have been proposed in order to
solve the reserve selection problem. In this paper
we provide a general framework for describing such
heuristic methods. Our main contribution is then
to propose a new heuristic method, based on a
parameterised reinforcement learning algorithm. This
method allows us to compute a heuristic function by
performing and exploiting many simulations of the
deforestation process. We show that this method can
be applied to problems with hundreds of sites, and we
show experimentally that it outperforms the classical
heuristic methods in terms of the average number of
species which can be conserved.

2102



1 INTRODUCTION

The primary means of reducing biodiversity loss is
to create networks of conservation reserves. In most
cases, the establishment of a reserve network is a
gradual, accretive process, comprising a sequence of
land acquisitions through time. One of the reasons
for this is that not all sites are available for purchase
at the same time Meir et al. (2004); another reason
is that funding for site acquisitions at any given
time is insufficient to acquire all sites Costello and
Polasky (2004). Conservation organisations that build
reserve networks over an extended period of time must
contend with the risk that sites will be developed
before they can be reserved Costello and Polasky
(2004); Meir et al. (2004).

Recently, dynamic models based on stochastic
dynamic programming (SDP) have been used to
solve reserve selection problems of this type Meir
et al. (2004); Costello and Polasky (2004). In these
models, unreserved sites are irreversibly developed
each year with a given probability, but only a
limited number of sites can be reserved each year,
because of budgetary or site-availability constraints.
The problem is to design a dynamic reservation
policy that results in the maximum expected number
of species conserved at the end of the problem
horizon. These models are used to investigate the
importance of the timing of selections in habitat
conservation programs. Existing models consider a
random development pattern, in which development
probability for each site is independent of the
development status of neighbouring sites. However,
it is more likely that development will occur as
a “contagion” process, beginning when new roads
make regions economically and logistically accessible
Laurance et al. (2004). In this paper we propose
improved SDP algorithms which make use of a graph
representation of the sites network to address the
reserve site selection problem under this spatially
explicit form.

2 A MODEL FOR DYNAMIC RESERVE SITE
SELECTION PROBLEMS UNDER CONTA-
GION RISK OF DEFORESTATION

2.1 State variables

In Costello and Polasky (2004), the following model,
based on habitat suitability is proposed for dynamic
reserve site selection. Assuming that there existJ

sites indexed byj = 1, 2, . . . , J andI species indexed
by i = 1, 2, . . . , I, aJ × I matrixA is given, where
an elementAji equals 1 if sitej is suitable for species
i, and 0 if not. At a given time periodt, any sitej can
be in one of the three following states :developed,

reserved or unreserved. It is assumed that a speciesi
exists in sitej if and only if sitej is not developed (i.e.
is in statereserved or unreserved). Thus, the stateSt

of sites can be unambiguously described by the means
of two of the three vectorsDt, Rt, Ut whereDt(j) =
1 means that sitej is developed, andDt(j) = 0 means
that it is not. Rt and Ut model whether sites are
reserved or unreserved. It is clear that for any sitej,
exactly one ofDt(j), Rt(j), Ut(j) equals one, and the
two others equal zero. Thus we defineSt = (Dt, Rt).

2.2 Control variable and process dynamics

The state of sites will evolve over time under the
influence of two types of factors: controlled and
uncontrolled factors.

- Controlled factor. At any time period, it is possible
to select one unreserved site for reservation, thus
changing its state fromunreserved to reserved1.
- Uncontrolled factor. At any time periodt, it is
assumed that any unreserved sitej which is not
selected for reservation can become developed at the
end of the period with a known probabilitypj . In the
most general case, the probability of development of
each sitej can depend on the whole current pattern of
development of the sites.

So, at each time stept, a selection action is chosen,
consisting in a site numberat ∈ {1 . . . J}, selected
for reservation. Then, ifUt(at) = 1 (site numberat is
unreserved), we getRt+1(at) = 1 andUt+1(at) =
0. Then, development can occur, and we consider
it as a contagion process : the probability that an
undeveloped sitej becomes developed depends on
the development status ofneighbour sites ofj. The
neighbourhood relation between sites is represented
by a symmetric matrixG such thatG(j, j′) = 1 if
sites j and j′ are neighbours, andG(j, j′) = 0 if
not. G(j, j) = 0 for all sites by definition. Then,
we define the neighbourhood of a sitej asN(j) =
{j′ ∈ 1 . . . J,G(j, j′) = 1}. The development
probabilities of a sitej which is currently undeveloped
are: pj(St+1(j) = D|St(j) = U, St(N(j)), at)
whereSt(N(j)) = {St(j

′), j′ ∈ N(j)}. The global
transition probabilities between states are defined as:

Pr(St+1|St, at) =
∏

j,St(j)=U

pj(St+1(j)|St(j) = U, St(N(j)), at)

andδ(St+1, St) if 6 ∃j, St(j) = U.

At this point, it should be noticed that development

1In Costello and Polasky (2004) the possibility for selecting
several sites, under a global budget constraint is modelled, however,
in the practical cases studied, only one site at a time can be reserved.
In this paper we adopt this simplification from the beginning, but the
more general case could be considered as well in our approach
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and reservation are assumed to be irreversible :
a developed or reserved site remains in this state
forever. Thus, the development / reservation process
will always end in anabsorbing state in which no
unreserved site persists. Such an absorbing state
will be reached in a number of time steps bounded
by the number of sites since at each time step one
undeveloped site becomes irreversibly reserved.

2.3 Reserve selection policy, objective function

We have described the stochastic controlled process
model of the evolution of global states. Let us now
describe the objective function of the control problem.
The objective of a reserve selection problem is of
course to minimise species losses, or equivalently to
maximise the number of species present in reserved
sites when the process has reached an absorbing state.
Our goal is to find apolicy π assigning to every
possible statesSt a site to reserve. Such a policy
should be defined so as to maximise the expected
value of the number of species reserved when an
absorbing state of the process is reached. ¿From now
on, we give up the subscriptt in the notations of the
state and action variables for sake of simplicity since
i) the process is assumed to be stationary (transitions
and rewards do not depend on time) and ii) it can be
shown (see Puterman (1994)) that optimal policies are
in this case stationary. Let us now define areward
function r(S, a) as the number of additional species
which are protected when sitea is reserved in stateS:

∀S = (R,D), a, r(S, a) =

|{i, (Aai = 1) ∧ (6 ∃j, R(j) = 1 ∧Aji = 1).}|

(Aai = 1) ∧ (6 ∃j, R(j) = 1 ∧ Aji = 1) means that
speciesi is in sitea, and does not belong to any site
already reserved.

Now, let us consider atrajectory τ , that is an
alternate sequence of states and actions, starting in
an arbitrary stateS0 and ending in an absorbing state
Sk : τ = (S0, a0, S1, a1, . . . , Sk−1, ak−1, Sk). We
define thevalue V (τ) of such a trajectoryτ as the
number of species eventually protected at the end of
the trajectory. Thus,V (τ) is exactly the number
of species protected in stateSk. The following
equality can be easily shown, which will be used in
the dynamic programming solution method for the
reserve selection problem :

∀τ = (S0, a0, S1, a1, . . . , Sk−1, ak−1, Sk),

V (τ) =
k−1∑

i=0

r(Si, ai).

A fixed policyπ does not define a single trajectoryτ ,
when applied in a start stateS, but rather a probability
distribution over a set of possible trajectories. The

valueVπ(S) of this policy is defined as the expected
number of new species which can be protected by
applyingπ, from start stateS :

Vπ(S) = E[V (τ)|S, π] (1)

whereE[V (τ)|S, π] is defined over the set of possible
trajectories generated by policyπ applied in initial
stateS. In the next Section, we are going to show how
to compute this value and how to findπ maximising
Vπ(S) for any possible initial stateS.

3 AN EXACT DYNAMIC PROGRAMMING
SOLUTION METHOD

We first define the following subsets of the global
states space:

∀k = 0, . . . , J,Uk =

{S = (R,D), |{j,max(R(j), D(j)) = 0}| = k}.

Uk is the set of states in which exactlyk sites remain
undeveloped. Obviously, any stateS ∈ U0 is an
absorbing state, for which no site can be reserved (and
no new species protected). The value of such states
should be zero :

∀S ∈ U0, V (S) = 0.

Now, given a fixed policyπ, the value Vπ(S)
of this policy, defined in equation 1 can
be computed recursively over all states :

Algorithm 1: Policy evaluation

Data:< S, π, r, p >

Result:Vπ

begin
for S ∈ U0 do Vπ(S) = 0 for k = 1 . . . J do

for S ∈ Uk do
Vπ(S) = r(S, π(S))+

∑

S′∈U0∪...∪Uk−1

p(S′|S, π(S)) · Vπ(S′)

return Vπ

end

This recursive computation ofVπ(S) is made possible
since the number of unreserved sites can only decrease
whenever a selection action is applied. Thus, we can
start by computing the value of states with no site
unreserved, then for states with only one unreserved
site, then two, etc. In this way, statesS(R,D) are
visited at most once.

It can then be shown by classical arguments from
stochastic dynamic programming Puterman (1994)
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that there exists adominating policy π∗, such that
∀S, Vπ∗(S) ≥ Vπ(S). Such an optimal policy, as well
as its value in every state can be computed exactly,
using the following dynamic programming algorithm :

Algorithm 2: Optimal policy computation

Data:< S, π, r, p >

Result:{π∗, Vπ∗}

begin
for S ∈ U0 do Vπ∗(S) = 0 for k = 1 . . . J do

for S ∈ Uk do
Vπ∗(S) = maxa undeveloped[r(S, a)+

∑

S′∈U0∪...∪Uk−1

p(S′|S, a) · Vπ∗(S′)];

π∗(S) = argmaxa undevelop[r(S, a)+

∑

S′∈U0∪...∪Uk−1

p(S′|S, a) · Vπ∗(S′)];

return {π∗, Vπ∗}

end

The following complexity result can be shown :

Proposition 1 Space complexity of Algorithm 2 is in
O(J4J ), while its space complexity is in O(3J ).

Proof: First, consider the inner loop of the algorithm. A
max and anargmax operations are performed over exactly
k actions (there arek undeveloped sites). In addition, a
summation is performed over the2k−1 possible successor
states (each of thek − 1 sites remaining undeveloped after
the current site to reserve is chosen can become developed
or stay undeveloped). So, the complexity of the inner loop is
in O(k2k−1). Now, one can check thatUk contains exactly
Ck

J2J−k possible states : there areCk

J possibilities to chose
k undeveloped sites amongJ sites, and there are2J−k

possible combinations ofreserved and developed sites
over the remainingJ − k sites. Finally, the outer loop is
performed fork = 0 to J , so that the overall complexity of
the algorithm is inO(

P

J

k=0
Ck

J2J−k(k2k−1)). But it can
be shown that

J
X

k=0

C
k

J2J−k(k2k−1) = J22J−2 = J4J−1
,

hence the overall complexity is inO(J4J ). Concerning the
space complexity, it is easily seen that the algorithm only
stores two values for each of the3J states, so that obviously
space complexity is inO(3J ). �

¿From these complexity results, it follows that the
exact computation of optimal policies for large reserve
selection problems is not feasible, except for really
small problems (less than ten sites). So, in the
following Section we will introduce a heuristic-based

approach to the reserve selection problem. We will
present two simple heuristic methods proposed by
Costello and Polasky (2004). Then, in Section 5, we
will present another kind of heuristic method, which is
adaptive, and makes use of simulations to compute the
heuristic function value. We will see that this family
of methods outperforms the simpler heuristic methods
in terms of quality of the returned policies, and is still
applicable for very large problems (hundreds of sites).

4 HEURISTIC SOLUTION METHODS

In the previous Section it has been shown that the
computation of an exact optimal policy is infeasible,
but for small problems. There are two sources of
difficulties for this exact computation, which are :

• the computation of the exact optimal value
function,Vπ∗ and

• the computation ofπ∗(S) which involves a sum
over the2k−1 possible successors ofS.

We will overcome the first limitation by computing
a simple heuristic approximation of the optimal
value function, while the second limitation will be
overcome by summing over a sample of the set of
successor states. These two “tricks” will allow to
compute heuristic reserve selection policies, which
performance can be in turn estimated by using Monte
Carlo simulation.

4.1 Heuristic approximation of the value function

Recall that once the optimal value functionVπ∗ is
known, we get an optimal policyπ∗ by :

∀S, π∗(S) = arg max
a undeveloped in S

[r(S, a)+

∑

S′

p(S′|S, a) · Vπ∗(S′)].

Now, when it is too costly to computeVπ∗ and when
a heuristic approximatioñV is available, we can
compute an approximately optimal policyπ̃ :

∀S, π̃(S) = arg max
a undeveloped in S

[r(S, a)+

∑

S′

p(S′|S, a) · Ṽ (S′)]. (2)

Costello and Polasky (2004) proposed two approx-
imation methods for computing a reserve selection
policy, which can be cast into this heuristic
framework. Namely, they called themmyopic and
informed myopic policies. They correspond to the two
following choices for the heuristic value functioñV :
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• Myopic. In this case,̃V (S′) = 0, ∀S′, so that̃π
is defined by

∀S, π̃(S) = arg max
a undeveloped in S

r(S, a).

• Informed myopic. In this case, Ṽ (S′) =
maxa undeveloped in S′ r(S′, a), so that equa-
tion 2 becomes

∀S, π̃(S) = arg max
a undeveloped in S

[r(S, a)+

max
a′ undeveloped in S′

∑

S′

p(S′|S, a′)·r(S′, a′)].

4.2 Sample-based computation of a heuristic
policy

Now, let us assume that a heuristic functionṼ has
been chosen. The heuristic policỹπ remains to be
computed through equation 2. But computingπ̃(S)
for a givenS, requires to compute

∑
S′ p(S′|S, a, ) ·

Ṽ (S′) over the whole set of possible successors ofS,
which size is2n−|D|−|R|, which can be too large, if
many sites remain undeveloped inS. To overcome
this limitation when the number of undeveloped sites
is too large, π̃ is computed on line (i.e. π̃(S) is
only computed when stateS is encountered) by the
following equation instead of equation 2.nsimul

successor sitesS′
i are drawn at random, according to

the lawp(S′|S, a) and :

∀S, π̃(S) = arg max
a undeveloped in S

[r(S, a)+

1

nsimul

·

nsimul∑

i=1

Ṽ (S′
i)].

In this way, a policy is never explicitly computed
and stored, but rather computed on line and only the
heuristic functionṼ needs to be stored.

4.3 Monte Carlo estimation of heuristic policies

The computation of a heuristic-derived policyπ̃ can
be onerous, due to the need to explore the whole
set of possible successors of a given stateS. The
estimation of the value of any policyπ can also be
prohibitively costly. As for the computation of̃π, it
can be computed through simulation :

Ṽπ(S) =
1

nsimul

·

nsimul∑

i=1

V (τi) (3)

whereτi is a randomly generated trajectory obtained
by applyingπ in S. Ṽπ(S) is of course an unbiased
estimation ofVπ(S) = E[V (τ |S, π)].

In the following Section, we are going to show
a method improving in practice the method based

on the myopic heuristic, which is the only one
applicable to very large problems (we observed that on
reserve selection problems with contact development,
informed myopic does not significantly improve
the performance of the myopic heuristic, but is
computationally more expensive). This improved
heuristic method uses a parameterised representation
of the heuristic functionṼ and the parameters are
automatically tuned and optimised through repeated
simulations.

5 PARAMETERISED REINFORCEMENT
LEARNING SOLUTION METHOD

Reinforcement learning is a set of simulation-based
methods which allow for the solution of large-scale
Markov Decision Problems Bertsekas and Tsitsiklis
(1996), such as the reserve site selection problem
we are interested in. In this framework, the optimal
value function Vπ∗ is approached by a (linear)
parameterised value functionVε∗ which is computed
through repeated simulations of trajectories. Then, a
policy πε∗ , greedy with respect toVε∗ is computed
(using a sample-based method).πε∗ approaches the
optimal policy π∗. The value ofπε∗ in the initial
state (every site undeveloped) is then estimated using
Monte Carlo methods, and compared to the heuristics
previously described.

5.1 Parameterised linear approximation of the
optimal value function

For very large SDP problems, such as the reserve
selection problem, when the number of sites is
large, it is not convenient to compute the exact
optimal value functionVπ∗ in tabular form. It
may be more reasonable to look for an approximate,
parameterised, value functionVε∗ , which can be
expressed much more concisely thanVπ∗ itself. A
linear approximation ofVπ∗ is often used, where
an approximation ofVπ∗ is searched in the set of
parameterised value functions of the form

Vε(S) = ε(1)ψ1(S) + . . .+ ε(k)ψk(S).

The ε(i), i ∈ {1, . . . , k} are parameters which will
be computed by simulation and theψi are arbitrarily
given real-valued functions calledfeatures Bertsekas
and Tsitsiklis (1996).

Then, the objective of feature-based reinforcement
learning algorithms is to compute a parameters vector
ε∗ such thatVε∗ is a reasonable approximation of
Vπ∗ . The general way is to use a simulation of the
controlled process in order to compute a sequence of
parameters vectors(εn), in the form

εn+1 = εn + ∆(Sn, an, Sn+1, r(Sn, an))
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where ∆(Sn, an, Sn+1, rn(Sn, an)) is a correction
factor computed from the output of the current
simulation trial. The most common implementation
of the above principle is thegradient descent method,
where updates take the form Bertsekas and Tsitsiklis
(1996)

εn+1 = εn + αn(Rn − Vεn
(Sn))∇εn

Vεn
(Sn).

whereRn is a direct estimation of the value ofVπ∗

drawn from the current trial and past experience. A
simple such estimation consists in using

Rn = max
a

r(Sn, a) + Vεn
(Sn+1).

Now, one simple case offeatures is of particular
interest Tsitsiklis and Van Roy (1996). This is the one
in which theψn take their values in the set{0, 1}. In
this case, the above equation simplifies into

∀i ∈ 1, . . . , k

εn+1(i) = εn(i) + αn(max
a

{r(Sn, a) + Vεn
(Sn+1)}

− Vεn
(Sn))ψi(Sn).

This will be the parameters update function which we
will use to solve the reserve selection problem.

5.2 Features in the reserve selection problem

Let us first describe the parameterised approximation
of the optimal value function in the reserve selection
problem. In this problem, we choose to use the
following J features: ψi(S) = 1 if site i is not
developed, andψi(S) = 0 if it is developed, for
i = 1 . . . J . Thus,ψi(S) = ψi(S(i)) only depends
on the state of sitei, and not on the global state of
the problem. In addition, concerning the learning rate
parameterαn, which should simply decrease to 0 asn
grows, we choose to define it asαn = 1

n(a) , i.e. the
number of time sitea has been reserved so far, during
the learning phase of the algorithm.

5.3 Computation of an approximately optimal
policy

The following steps are performed in order to choose
which site to reserve, when a new state is encountered.

- irst of all, ε∗ = limn→+∞ εn is computed.
- Ṽ = Vε∗ is chosen as the heuristic function.
- Then, for any given stateS encounteredon line,
site π̃(S) computed through equation 8 is chosen for
reservation.

Such a policy can be estimated by applying procedure
3 to the initial (every sites undeveloped) state of
randomly generated problems. A comparison of
the simple heuristic-based solutions described in the
previous Sections and of the RL-based heuristic, is
shown in the next Section.

6 EMPIRICAL RESULTS

6.1 Benchmark problems

We analysed empirically the results of the three
above described methods (exact, myopic-heuristic and
parameterised reinforcement-learning) on a randomly
generated set of reserve site selection problems of
various sizes. Problems were randomly generated,
using the following set of parameters :

- J is the chosen number of sites,
- I is the number of considered species,
- δ is the degree of the graph, i.e. the maximum
number of neighbours for a given node,
- TS is the maximum number ofthreatened sites, i.e.
sites which can become developed without having any
developed neighbour site,
- SS is the maximum number of suitable sites for any
given species.

The outputs of the generator are the following:

- the neighbourhood graph matrixG,
- the site / species matrixA,
- the development diffusion probabilities used for
building the development probabilities for each sitej
(pdiff (j) ∈ U [0.3; 0.5]),
- the development probabilities for threatened sitesj

(pdev(j) ∈ U [0.2; 0.3]).

6.2 Small problems

For small problems (J ≤ 10), the exact method
described in Section 3 could be applied, and we
checked experimentally the CPU time needed for
solving each problem (Figure 1). The parameters
values we used were the following : J ∈
{4 . . . 10}; I = 15; δ = 4;SS = 3 andTS = 2. The
computation times were obtained by averaging over
30 randomly generated problems for each value ofJ .

Figure 1. Empirical computation time for the exact
method
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6.3 Large problems

For larger problems (J ≤ 100), we compared
the RL and myopic methods in terms of species
losses (Figure 2). The parameters values were :
J ∈ {30, 40, 50, 60, 70, 80, 90, 100}; I = J +
50; δ = 4;SS = 3 and TS = 6. For each
configuration we generated randomly one problem
over which we performed 1000 pairs of trajectories
(one induced by the myopic heuristic, the other by
the RL method). Figure 2 shows the average loss
of species experienced in each configuration for the
two methods. It can be observed that in average,

Figure 2. Empirical estimation of species losses :
Myopic heuristic and RL

for problems of size 60 or more sites, the average
percentage of species lost is around 8% for the myopic
heuristic, and around 4.5% for the RL method. Thus,
the RL method allows to reduce the number of lost
species by more than 40% !

6.4 Very large problems

For very large problems (J ≤ 1000) it becomes really
difficult to assess the value of policies generated by
RL methods, since we need to compute on-line the RL
policy, using sampling (equation 11), after a vector
of optimal parametersξ∗ has been obtained. Thus,
computing a single trajectory for a given parameter
is a bit costly, and it is not realistic to evaluate by a
Monte Carlo method the policyπξ∗ . However, it is of
course realistic to apply such a policy for very large
problems, since the time between two decision steps
is important. Furthermore, the CPU time needed for
the computation ofξ∗ does not increase too quickly,
as Figure 3 shows.

7 CONCLUDING REMARKS

In this paper we described several methods for solving
the dynamic reserve site selection problem, initially
described in Costello and Polasky (2004). We

Figure 3. Empirical estimation ofξ∗ computation
time for very large problems

first described a new, exact, dynamic programming
algorithm, applicable to small problems, and we
showed its theoretical and empirical complexity.
Then, we presented a general framework for heuristic
selection methods, and showed that the selection
methods proposed in Costello and Polasky (2004) fit
into this framework. Finally, we proposed a new
parameterised reinforcement learning method, which
could be seen as an on-line heuristic method, and we
showed experimentally that it improved significantly
the already existing heuristic methods in terms of
quality of the result, and that it could be applied to
really large problems, such as the ones that can be
encountered in practice. Our next step is to apply the
latter method to a real example in Costa Rica forests
for which we have historical data for the past twenty
five years (development process).
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