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EXTENDED ABSTRACT 
 

Recreation simulation modeling, when combined 
with intelligent monitoring, is becoming a valuable 
tool for natural resource managers.  The goal of 
recreation simulation is to accurately model 
recreational use, both current and future.  Models 
are applied to gain a thorough understanding of the 
characteristics of recreation.  Indicator variables 
such as visitor experience, carrying capacity and 
impact on resources can be computed.   If the 
model is valid it can be used to predict future use 
as well as to investigate the effect of new scenarios 
and management decisions. 

Recent research has focused on agent-based 
modeling techniques.  Recreators are represented 
by autonomous, intelligent agents that travel across 
the landscape.  A central issue is the model used 
for agent travel decisions. Current techniques 
range from replicating trips exactly to making 
local, intersection level decisions based on 
probability.  But little attention has been paid to 
justifying these models. 

In this work we examine a range of probabilistic 
models.  The models differ in the length of the 
Markov chain used to compute agent decisions.  
The length of the chain ranges from zero (local 
decisions only) to infinity (exact trip replication).  
We test the length of the chain on held out data for 
validation.  We show that the choice of model 
strongly influences the validity and results of the 
simulation. 

To test these models we present a framework for 
automatically constructing agent-based models 
from an input set of GPS tracklogs.  The GPS 
tracklogs are collected by volunteers as they 
recreate in natural areas. Traditionally, data on 
where recreators travel is collected in the form of 
trip diaries, filled out on paper by visitors or by 
interview.  Other demographic and attitudinal data 
is also collected along with the actual route 
traveled.  Although the additional information is 
valuable, the data must be collected and entered by 
hand.  Paper diaries also place a significant time 
burden on visitors, reducing the compliance rate as 
well as skewing the results (ensuring only visitors 
with excess time participate). 

Using GPS devices to record visitor trips helps 
alleviate these problems.  The framework for 
processing GPS trips and automatically building a 
model presented in this work significantly reduces 
the time required to build a model, lowers the cost 
and widens the applicability of recreation 
simulation modeling to new areas.  GPS devices 
automatically record their data, requiring only that 
visitors turn the unit on and carry it with a 
marginal view of the sky.  GPS use is also 
becoming more widespread among recreators.  As 
more recreators use GPS to record their trips, data 
useful to modeling is becoming increasingly 
available. 

The steps in GPS driven model generation are as 
follows.  First, the set of GPS tracklogs is 
combined to form the underlying travel network 
along which agents will travel.  Each GPS tracklog 
is then traced along the network in order to 
determine what choices were made as the recreator 
traveled across the network.  This produces a list 
of trip itineraries. Model parameters (probability 
tables) can then be computed from the trips. 

The length of the Markov chain used in the 
probability tables is a parameter to the model.  The 
optimal value is found by testing the likelihood of 
heldout data for different chain lengths.  This step 
is done automatically.  Once the optimal length of 
the chain is chosen the model is complete and 
agent-based simulation can proceed.  

The entire framework for automatically producing 
GPS driven agent-based models is implemented in 
our TopoFusion GPS mapping software. 

We present results from two collections of GPS 
tracklogs from different trail systems.  The first is 
from Tucson Mountain Park and is the result of a 
volunteer collection effort by the authors.  A trails 
master plan is underway at the park, with input 
from our model.  The second is a collection of 
tracks from mountain bike rides in the Finger Rock 
Wash area, collected by the author. 

Testing by held-out data on both GPS datasets 
indicates that current modeling methods are 
insufficient to model recreator travel decisions.  
The middle ground (neither exact replication nor 
local decisions) consistently performs better. 
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1. INTRODUCTION 

Typically, recreational use is modeled using a 
combination of statistical and GIS techniques 
(Forer 2002; Ploner 2002).  Other approaches 
(Gimblett et al. 2001; Itami 2002) have employed 
the use of autonomous agents (Franklin 1996) to 
simulate human recreators.   

To model effectively, data must be collected on 
current use.  Past methods have focused on paper 
trip diaries and oral interviews. (Lynch 2002).   

There have been several approaches to modeling 
recreator behavior as described by the data 
collected.  RBSim’s (Gimblett et al. 2001),(Itami 
2002) probabilistic models use exact trip 
replication, where actors in the simulation are 
assigned a specific itinerary that is chosen from the 
database of actual trips collected.  Manning et al 
(Manning 2001),(Wang B. 1999) present a 
different model using the Extend modeling 
package, where local decisions are made at each 
intersection.  These two approaches represent the 
extremes of the “K-history” model presented in 
this paper.  Here, K is a model parameter that 
represents the length of the Markov chain (Rabiner 
and Juang 1986) considered for a trail intersection 
decision.  The K-history model is probabilistic, 
relying on counts of decisions made based on the 
data collected. 

Using the approach presented in this paper, two 
GPS datasets were processed and K-history 
models were built using TopoFusion software 
(Morris and Morris 2002-2005).  The K-history 
model allows trips to be generated based on a 
variable length history of decisions.  Depending on 
the length of the history considered, this model 
will simulate the range of possible models: from 
exact trips to local decisions.  By computing the 
likelihood of held out data we present 
experimental results comparing the choices of K 
for the two datasets.  We conclude that the choice 
of K can be a difficult matter and that it is highly 
dependent on characteristics of the data. 

2. DATA COLLECTION 

For this work we focus on two GPS datasets: 
Tucson Mountain Park and Finger Rock Wash.  
Tucson Mountain Park is a 20,000 acre natural 
area that borders the city of Tucson.  The park 
offers a multi-use trail system open to non-
motorized recreation.  Due to its proximity to an 
urban area, it is subject to increasing use as well as 
pressure from development.  A park master plan is 
under way to evaluate the necessity of the complex 
network of trails and access points available.  
There is a proliferation of social trails as a result of 
a lack of management in the area. 

The authors have begun a GPS data collection 
effort in Tucson Mountain Park.  Volunteers are 
asked to carry a GPS device as they recreate in the 
park.  Current GPS users were also solicited to 
submit GPS tracks of their trips.  The collection 
effort is still underway, but to date 100 trips have 
been collected. 

The second data set, Finger Rock Wash, is a 
collection of 75 GPS tracks of bicycle rides 
collected by the author over a period of three 
years.  All tracks originated at the author’s 
residence, following a myriad of routes in order to 
access a local trail system. 

3. AUTOMATED MODEL GENERATION 
FROM GPS DATA 

The process of generating a model given a 
collection of GPS tracks proceeds in three steps: 
first a travel network is produced from the 
combination of all tracks, second, each track is 
matched to edges of the network to determine the 
routes taken and third the model parameters are 
computed from the routes.  The following sections 
briefly outline the algorithms used to achieve these 
three steps.  All of the algorithms presented in this 
paper are implemented in the TopoFusion GPS 
Mapping Software. 

3.1.     Travel Network Production 

A travel network is required for the actual 
simulation (for the agents to travel across) to run.  
A common, baseline network is also required to 
relate the trips recorded by GPS tracks to each 
other.  Since most tracks will overlap each other, 
traveling on the same roads or trails as other 
tracks, it is necessary to determine what the 
underlying structure of the travel network is in 
order to determine what routes were taken by each 
track. 

One solution is to trace out the network, by hand, 
using topographic maps, aerial photographs as well 
as the GPS tracks themselves.  This is not a trivial 
task since nodes and edges in the network must 
align exactly.  Tracing complex networks can be 
very time consuming.  We focus on automated 
methods for these reasons, as well as to decrease 
the level of expertise required to build a 
recreational model.   

Determining the travel network automatically is a 
non-trivial task.  Due to GPS errors, tracks do not 
overlap exactly.  Instead, they intersect and 
parallel each other in unpredictable ways, as seen 
in Figure 1.  The key issue is how to determine 
when portions of tracks correspond to the same 
trail or road and when they do not. 
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A procedure for producing GPS networks is 
presented by the authors in (Morris et al. 2004).  
Given a set of overlapping GPS tracks in an area, it 
produces the complete travel network where all 
duplicates have been eliminated.  It proceeds by 
first finding all intersections among the GPS track 
logs.  The result is a network, but one that is far 
too complex and contains mostly irrelevant nodes 
and edges.  The main task of the procedure is to 
traverse the network, reducing the areas that are 
determined to actually be representations of the 
same trail or road. 

There is an adjustable tuning parameter for how 
close (and similar) areas of the network must be in 
order to be considered the same road or trail.  This 
value is set in meters, and is dependent on the 
accuracy of the input data.  It is not a hard 
threshold, but a threshold based on the Hausdorf 
distance between edges.  A typical value used is 40 
meters.  It can be set higher than needed; the only 
problem occurs when the travel network contains 
actual trails or roads that parallel each other 
closely (e.g. less than 40 meters from each other).  
Then the procedure may reduce that section to one 
edge where there should be two.  Generally the 
default value is sufficient, but the procedure may 
need to be run again, testing different values.  This 
is but a brief overview, for other issues and details 
see(Morris et al. 2004).  The resulting network 
from the GPS tracks shown in Figure 1 is given in 
Figure 2. 

3.1.     Determining Trip Itineraries 

Given a travel network and a set of GPS tracks 
traveling the network, the next step is to determine 
the route each track traveled.  Due to GPS errors, 
each track will vary in distance to the edges in the 
network, usually intersecting at various points.  
Tracks can also turn around at any point, or may 
be traveling close to two edges in the network.  

Formally, this problem is known as the Map 
Matching problem.  One map is the underlying 
network, and the other is the GPS track (which is a 
map of where the GPS receiver traveled).  The 
problem is to find out how best to match these two 
maps together in some optimal way.  

Efrat et al (Efrat 2003) present a dynamic 
programming approach using the Frechet distance 
as a metric.  The details of the algorithm are 
complex and to date is has not been tested on 
actual GPS data (only fabricated data).  Using the 
Frechet distance is problematic, since the 
algorithm is optimizing for the minimal Frechet 
distance across each edge.  The problem is that 
recreators can travel partial edges of the network, 
which will result in inflated Frechet distances.   

TopoFusion uses a simple greedy algorithm to 
determine the routes traveled.  It proceeds as 
follows.  First, the beginning point of a GPS track 
is compared with all nodes in the network to 
determine the closest starting point.  Then, each 
outgoing edge from the node is compared with the 
first portion of the GPS track using the Hausdorf 
distance (which is invariant to the “back-tracking” 
problem described above).  The outgoing edge 
with minimal Hausdorff distance is selected as the 
first edge traveled by the track.  The track is then 
traversed until it reaches the next node (measured  

by simple distance).  The process is then repeated 
(comparing Hausdorf distances with the next 
section of the track) until the track reaches its 
endpoint. 

The list of edges in the network traversed is output 
to a text file.  When the procedure is run on all of 
the input GPS tracks, the result is a single text file 
listing the itineraries of each track, as shown in 
Figure 3.  The first number preceding the colon is 
the node number where the trip begins and the 
trailing -1 indicates an end of line. 

Figure 1.  Overlapping GPS tracks from Tucson 
Mountain Park Dataset 

Figure 2. Resulting network from GPS tracks 
shown in Figure 1.  Duplicate representations of 
trails have been eliminated. 
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Figure 3. Example trip itineraries 

3.3.     Probabilistic Decision Modeling  

Given the outputs of the two proceeding steps, the 
travel network and trip itineraries, we can now 
proceed to compute the parameters of our model.  
We first give details on the K-history model used 
to evaluate different travel models. 

3.3.1.      The K-History model 

The goal is to model the decision process 
recreators go through at a trail intersection.  A 
straightforward approach is to compute a 
probability distribution based on the data collected 
on what decisions actual recreators made.  At a 
given intersection, if 70 percent of people turned 
left and 20 percent right, as indicated in Figure 
4(a), the model would send agents left 70 percent 
of the time and right the other 20 percent.  This is 
the simplest model and corresponds to a K-history 
model with K = 0. 

But suppose that an agent returns to the 
intersection after traversing the loop shown in 
Figure 4(b).  The probability distribution remains 
the same, so he will likely traverse the loop again, 
with 70 percent probability.  This will result in 
continuous loops with very little chance of exit.  
Although this pattern may actually be represented 
by a data set, in actual recreation situations, loops 
are rarely traversed in succession; this model is not 
sufficient for modeling this situation. 

To solve this problem, we can condition the 
probability distribution based on the incoming 
edge that the agent is traveling on to reach the 
intersection.  In this case, for every incoming edge 
(there are 3 in Figure 4) there exists a different 
probability distribution.  Thus, agents traveling on 
the loop could have a much higher probability of 
exiting the loop than continuing on it.  This model 
of conditioning the probability distribution on the 
incoming edge is the K-history model with K = 1.  
That is, the decision process is based on the 
previous intersection decision. 

Analogous situations can be constructed where the 
K = 1 model also fails to accurately model the 
data.  A natural question arises, what value of K is 
optimal?  This is the intent of this work: to develop 
a framework for evaluating the choice of K.   

If the goal is to only model the data collected as 
accurately as possible, then the choice of K is 
obvious: as large as possible.  This ensures that 
paths not seen in the training data are not allowed 
to occur in the simulation.  This is exactly the 
model used in RBSim, where agents are assigned a 
specific trip from the training data.  The problem 
with this approach is that the trips collected are 
only a small sample of the use actually occurring.  
Since there is no room for variation from the 
collected data, over-fitting results (K is too large).   

3.3.2.     Computing Model Parameters 

Given a choice of K, we are able to compute the 
model parameters (i.e. the probability 
distributions) simply by counting the choices 
shown in the training data.  For a given node, there 
exists a probability distribution for each possible 
path (sequences of choices) of length K that ends 
at that node.  Thus, as K increases, the number of 
possible paths ending at a node increases 
exponentially.  Many of the tables will simply be 
empty (full of zeros) since they represent 
impossible paths given the training data.  To save 
space and to decrease the complexity of the 
implementation, we do not pre-compute the 
probability distributions for all possible nodes.  
Instead, we simply store all of the paths that lead 
to a given node, at the node.  Since the number of 
total trips is generally low (only 100 in the Tucson 
Mountain Park dataset), the number of paths 
leading to a node is generally small. 

As an agent reaches a node during simulation, the 
probability distribution is calculated by counting 
the number of trips (only looking K steps back) 
that match the agent’s path history.  A uniform 
random number generator is used to choose an 
outgoing edge based on the newly computed 
distribution. 

Another model parameter is the entrance and exit 
nodes of the network.  These attributes are simply 
assigned automatically to the nodes where trips 
enter and exit the simulation. 

1:,1,4,2,7,10,9,10,7,8,11,-1 
1:,4,2,7,10,9,10,7,8,12,-1 

1:,4,2,7,10,9,10,10,9,9,10,7,8,12,-1 

1:,1,4,2,7,10,9,10,7,8,11,12,-1 

1:,4,2,8,11,-1 

70% 

20%

10%
1 

(a) (b) 

2

3

Figure 4. Example trail intersections.  (a) Simple 
K = 0 probability distribution.  (b) Looping 
example where K=0 model breaks down 
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4. COMPARING K-HISTORY MODELS 

To compare different values of K in the K-History 
model, we compute the likelihood of held out data, 
given the model.  This gives us a measure of how 
well our model (for different K values) predicts 
new trips.  Since our data sets are always a sample 
of the actual use occurring, the performance on 
new trips is the most important measure of the 
validity of a model.  Held out data is chosen by 
selecting a random 10% of the training set.  The 
model is then trained on the remaining 90%.   

The held out data is a set of m trips, H = {t1 , t2, . . .  
tm}.  To compute the likelihood of H, it is sufficient 
to multiply the likelihood of each trip: 

P(H) = P(t1) · P(t2) . . . · P(tm)          (1) 

Since each trip is an independent event, 
multiplying the probabilities in (1) is valid.  The 
probability of each trip is computed as:  

n
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n

i
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1
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=
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=
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           (2) 

Where a trip is represented by a sequence of n 
choices, c1, c2, . . . cn, one choice for each node 
reached in the network.  The probability values 

),,|( 1 Kiii cccP −− Κ are determined as in the 
simulation model for agents.  For a given node 
where a choice of outgoing edge, c, occurs, we 
compute a probability distribution for the outgoing 
edges based on the 90% training data.  The 

distribution is computed by counting the outgoing 
edge choice made by each trip in the training set 
that matches previous choices Kii cc −− ,,1 Κ .  
When the sequence of previous choices is less than 
K in length, the probability is simply conditioned 
on all of the previous choices.   

Equation (2) is normalized by the number of 
choices in the trip, n, so that each trip receives 
equal weight in equation (1).  There is also an 
underlying assumption that each choice made is 
independent of all other choices.  Unfortunately 
there is no simple fix for this assumption. 

5. RESULTS 

First we present a plot of the likelihood of the 
Tucson Mountain Park data set, when trained with 
100% of the data, for varying values of K.  In this 
case, the held out set H is the training set itself.  
This measures how well different values of K 
model the training set.  As figure 5 shows, as K 
increases, the likelihood increases.  A K value of 
zero performs poorly and performance levels out 
past K = 10.  This is the expected behavior; as 
more parameters are added, we are fitting the 
training set more accurately.  This figure also 
confirms the notion that trail decisions are made 
based on prior information.  K=0 corresponds to 
no prior, which we see performs poorly.  We also 
note that if the model’s goal is to accurately 
simulate current use, not predict future use, a high 
value of K should be used (assuming a statistically 
sufficient sample size has been collected). 

 
 Figure 5. Log Likelihood plot of training data from Tucson Mountain Park.  Here higher values of 
likelihood indicate a better fit of the model.  We see that as model parameters are increased (the value of K 
is increased) the model better fits the data. 
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Figure 6 shows the plot of P(H) where H is a 
randomly selected 10% of the Tucson Mountain 
Park dataset.   The likelihood of the held out set is 
maximal at K = 2.  This means that to best model 
recreator use at Tucson Mountain Park, trail 
decisions should be based on the last two 
decisions, but no more.   However, we see that the 
model performs relatively well for values in the 
range 1 to 7.  After 7, the performance begins to 
suffer due to over-fitting.  As K grows larger, the 
model loses the ability to predict trips that were 
not part of the training data. 

A plot of P(H) for the Finger Rock Wash dataset is 
given in Figure 7.  K = 5 is maximal here, 
however, a larger range of K values produces near 
optimal performance.  It is interesting to note that 
K=0 (no prior information) performs well.  This is 
due to the fact that the dataset is highly directional.  
That is, the trails are almost always traveled in a 
certain direction.  Thus, it is very likely that 
regardless of the previous decisions made, the 
most likely choice will be a good one.  However, 
higher values of K still perform slightly better, 
showing that prior information does improve 
performance.  We again see the characteristic 
decline in performance as K increases. 

6. DISCUSSION 

The results presented in this paper indicate that the 
choice of K is a delicate matter.  The two extremes 
represented by current approaches have their 
drawbacks.  The trip modeling of RBSim (K=∞) 
suffers from a poor ability to predict trips not 

present in the training dataset.  The Extend (K=1) 
models employed by Manning et al do not 
sufficiently model the training set and also have 
poor predictive power.  Optimal K values on both 
of the datasets presented in this paper were 
between the two extremes. 

It is important to note that the comparisons with 
previous techniques are for baseline travel models 
only.  Actual models include agent logic and other 
rules that influence travel decisions and improve 
accuracy.   

It is clear that the choice of K is highly dependent 
on both the travel network and the structure of the 
trips.  There is no magic value of K that should be 
applied in all cases.  We have presented an 
automated framework for producing a K-history 
model using an optimal value of K.  Given input 
trips in the form of GPS tracks, the procedure 
automatically generates the travel network, the trip 
itineraries, the optimal value of K as well as the 
model given that choice of K.  Little human 
supervision is required. 

There is much work to be done.  This is a 
preliminary study to evaluate the current 
approaches taken by other researchers.  We plan to 
investigate more complex models, continuing to 
compare performance with current models using 
held out data.  Some examples of more complex 
models include variable K values, where each node 
is assigned a K value, perhaps differing from other 
nodes.  Another possibility is to cluster the trips 
beforehand, selecting different values of K for each 
cluster. 

 
Figure 6. Log Likelihood plot of P(h) for Tucson Mountain Park dataset.  K=2 is the optimal value, 
meaning that considering the last two decisions produces the best performance. 
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