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ABSTRACT

The EL estimators have some favorable higher order
asymptotic properties. We extend the EL method
proposed by Donald et al. (2003) to estimate non-i:i:d:
continuous-time models with the known functional
form of the conditional characteristic function. In
many cases even the MLE method can not be
performed, the EL method can do. More over, not
only does the EL method resolve the problem of
covariance matrix singularity in the regular GMM
but also utilize the information in the conditional
moment conditions fully. The EL method can be
applied to many popular �nancial models such as
some of diffusion models, jump diffusion models and
stochastic volatility models. By way of a Monte Carlo
comparison, we show that the EL method has better
�nite sample properties than C-GMM introduced by
Carrasco et al. (2004).

Work in the area of EL has been initiated by Owen
(1988). Qin and Lawless (1994) proposed the EL
method for general estimation equations. Donald et
al. (2003) and Kitamura et al. (2004) propound
some estimation methods with conditional moment
restrictions. Our method is an extension of the EL
method by Donald et al. (2003). According to
Newey and Smith (2004), The EL estimators have
some favorable higher order asymptotic properties. In
particular, the higher order asymptotic bias of the EL
will be less than that of the GMM, when there are
manymoment restrictions. Such theoretical advantage
can lead to better results to the empirical analysis with
many moment restrictions. Although the method of
Kitamura et al. (2004) can also work, we do not select
the method of Kitamura et al. (2004), because of its
computational burdens.

When we know a closed-form and the tractable
expression of the likelihood function of the model,
the maximum likelihood estimation method is the
best option to estimate parameters of a model.
Unfortunately, in many cases we often fail to derive

a tractable form of likelihood function, especially
when it comes to models with jumps, derivation of
the tractable form becomes more dif�cult. Since in
many cases the characteristic function often has a
tractable form even when likelihood function does
not, the characteristic function may be employed as
an available substitute of likelihood function. Once
we obtained a tractable form of the characteristic
function, we can exploit conditional moment con-
ditions using the conditional characteristic function
(CCF) and the empirical conditional characteristic
function (ECCF) for non-i:i:d: processes. Based on
the conditional moment conditions derived by the way
mentioned above, one can perform the EL estimation.

A great deal of effort has been made on the
estimation using the GMM approach in this area
(see, for example, Singleton 2001, Chacko and
Viceira 2003 and Yu 2004). What seems to be a
grave drawback, however, is the singularity of the
covariance matrix, which occurs when we possess
many moment conditions. Carrasco et al. (2003) have
introduced the C-GMM (GMM with a continuum of
moment conditions) to overcome such a drawback of
GMM approach. For the same purpose, we propose
a different estimation method adopting the maximum
empirical likelihood (EL) approach.

We carry out a Monte-Carlo experiment with the CIR
model and a jump diffusion model to compare our
method with C-GMM. As a result, the EL method
shows us some surpassing �nite sample properties,
which are shown by the Monte-Carlo simulation.
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1 INTRODUCTION

What we are interested in is the estimation of
continuous-time models with conditional moment
restrictions. We limit our attention on the
one dimensional Markov processes, though our
EL method works for almost all continuous-time
processes with available forms of CCFs. We denote
a jump diffusion process as fXt ; t � 0g, which takes
values in some open subset A � R and satis�es the
stochastic differential equation

dXt = µ(Xt)dt+σ(Xt)dWt +dZt :; (1)

where µ(�) and σ(�) is some regular function,Wt and
Zt represent a winner process and a jump process
respectively. Xt is adopted to the augmented �ltration
fFt ; t � 0g generated by Wt and Zt . The jump
diffusion process without the term dZt is called as the
diffusion processes. For some classes taking form as
eq(1), closed forms of associated CCF can be derived.
We de�ne CCF as

ψ(ω;τjθ ;Xt) = Eθ (eiωXt+τ jXt);

where ω; τ; and θ denote the transform variable,
increment of time t; and parameter vector respectively,
and i =

p
�1. The sample counterpart of CCF, the

ECCF is de�ned as exp(iωXt+τ).

In the following section we show how to derive
CCFs of continuous-time stochastic processes, and
how to construct conditional moment restrictions
for the processes using CCFs and ECCF. Empirical
likelihood estimation is described in section 3. In
section 4, we summarize another method, the C-
GMM. In section 5, we perform a Monte-Carlo
simulation to compare EL with C-GMM introduced
by Carrasco et al (2003). Section 6 reports
conclusions.

2 CCF AND CONDITIONAL MOMENT RE-
STRICTION

The CCFs of continuous-time stochastic processes is
an integral for the construction of our EL method. In
this section, we will focus on a class of stochastic
processes what is termed as re�ne processes, though,
our method will work whenever we have available
forms of CCFs of the processes. As illustrations,
we will describe roughly on how to derive the CCFs
of some af�ne processes and how we can construct
conditional moment restrictions for the processes
using CCFs and ECCF.

2.1 CCFs of af�ne processes

According to Bakshi and Madan (2000), Duf�e
et al (2000), and Chacko and Das (2002), the

conditional characteristic functions can be derived
in closed form for af�ne stochastic processes. The
class of af�ne processes, de�ned by Duf�e and Kan
(1993), encompass most of the popular �nancial
continuous-time models. By solving the associated
Kolmogorov backward equation (KBE), we can derive
the characteristic functions of a af�ne process (see,
Chacko and Viceira (2003)). Following Chacko and
Viceira (2003), we express the KBE by

Dψ(ω;τ; jθ ;Xt) = 0;

where D is the in�nitesimal generator for the process.

Singleton (2001) de�nes the af�ne diffusion processes
fXt ; t � 0g as the a diffusion process, which satis�es
the following equations;

dXt = µ(Xt)dt+σ(Xt)dWt (2)

µ(Xt) = θ +κXt
σ(Xt)2 = h+ lXt ;

where θ ;κ;h;and l are some parameters. By solving
the associated KBE , we can obtain the CCF of a
diffusion process as

ψ(ω;τ; jθ ;Xt) = exp(A(ω;τ)+B(ω;τ)Xt);

with A and B satisfying the complex-valued ODEs

�B(ω;τ) =�κB(ω;τ)� 1
2
lB(ω;τ)2

�A(ω;τ) =�θB(ω;τ)� 1
2
hB(ω;τ)2

with boundary conditions B(ω; t+τ)= u and A(ω; t+
τ) = 0:

2.2 Conditional moment restrictions

Using the CCF mentioned above and ECCF, we
can construct the following conditional moment
conditions:

E [ψ(ω;τjθ ;Xt)� exp(iωXt+τ)jXt ] = 0:

Wewill use the conditional moment condition by real-
valued form as follows:

E[Re(ψ(ω;τjθ ;Xt)� exp(iωXt+τ))jXt ] = 0
E[Im(ψ(ω;τjθ ;Xt)� exp(iωXt+τ))jXt ] = 0; (3)

where Re denotes real part of complex number and Im
the imaginary part.

3 EMPIRICAL LIKELIHOOD ESTIMATION

In this section, we will propose an empirical
likelihood estimation of continuous-time models with
conditional moment restrictions. Our EL method
bases on the EL method developed by Donald et al.
(2003).
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3.1 Unconditional moment restrictions

The main idea of Donald et al. (2003) is to
approximate the conditional moment restrictions
by exploiting sequences of unconditional moment
restrictions. Using the idea of Donald et al. (2003),
we approximate the conditional moment restrictions
eq(3) by the following equations:

E[Re(ψ(ω;τjθ ;Xt)� exp(iωXt+τ))
qK(Xt)] = 0
E[Im(ψ(ω;τjθ ;Xt)� exp(iωXt+τ))
qK(Xt)] = 0

(4)

where, qK(x) is a vector of spline approximating
functions. It is de�ned as

qK(x) = (1;x;x2;x3; I(x� s1 > 0)(x� s1)3; � � � ;
I(x� sK�3�1 > 0)(x� sK�3�1)3)0 (5)

where I(�) denote an indicator function, si 2 R+ for
(i = 1;2; : : : ;K� 3� 1) is the knots of spline, which
is placed in the support of x.

3.2 Estimation method

Once we obtained moment conditions as eq(4), we
can perform an EL estimation using the moment
conditions in eq(4). The EL estimation can be
accomplished by solving a constrained maximum
problem as follows:

max
pt>0;θ2Θ

T

∑
t=1
ln pt ; s:t:

T

∑
t=1
ptGt(θ) = 0;

T

∑
t=1
pt = 1;

(6)
where pt is a positive weight, for i:i:d: case it can be
regarded as probability, and Gt(θ) is the vector of the
form�

Re [ψ(ω;τjθ ;Xt)� exp(iωXt+τ)]
qK(Xt)
Im [ψ(ω;τjθ ;Xt)� exp(iωXt+τ)]
qK(Xt)

�
.

This constrained maximum problem eq(6) is solved
using the method of Lagrange multipliers. The
associated Lagrangian is

F(θ)=
T

∑
t=1
ln pt+λ

0
 
T

∑
t=1
ptGt(θ)

!
+γ

 
T

∑
t=1
pt �1

!
:

It is straight forward to obtain

�pt =
1

n(1� �λ 0Gt(θ))
;

and �λ 0 is the solution of
T

∑
t=1

Gt(θ)
1�λ

0Gt(θ)
= 0:

Using the above results, we de�ne our EL estimate as

�θ = argmin
θ2Θ

max
λ2Λ(θ)

T

∑
t=1
ln
h
1�λ

0
Gt(θ)

i
: (7)

where

Λ(θ) = fλ : λ
0
Gt(θ)� 1; t = i; :::;Tg:

The optimization problem in eq(7) is a dual saddle
point problem. The inner one is a constrained
maximization problem with constraints λ

0Gt(θ) �
1 and can be solved by a sequential quadratic
programming (SQP) method (see, for example, Gill et
al 1981). The outer minimization problem is solved
by the simplex search method (to see Lagarias et
al 1998). This is a direct search method that does
not need numerical or analytic gradients. For the
inner problem, Owen (2001) offers an alternative
method. Using this method, we can transform
the constrained maximization problem into a non-
constrained maximization problem. By such a way,
the computational burden is reduced, however, we
�nd the solution of the method of Owen (2001) is
worse than the method by solving the constrained
maximization of inner problem directly in some
conditions.

3.3 Asymptotic properties

Donald et al. (2003) investigates the large sample
properties of empirical likelihood estimation of i:i:d:
data with conditional moment restrictions. They give
us the way to approximate the conditional moment
restrictions by sequences of unconditional moment
restrictions, and show conditions so that the EL
estimate can achieve ef�ciency bound as the number
of restrictions grows with the sample size. Although
our concern is of the non-i:i:d: case, which is different
from the i:i:d: case of Donald et al. (2003). One
can expand the results of Donald et al. (2003) to the
non-i:i:d: case by modifying some regular conditions
of i:i:d: case, and using some asymptotic theory
for dependent distributed processes instead of that for
i:i:d: processes. Since the moment condition eq(4) is
a martingale difference sequence, the Law of Large
Number and Central Limit Theorem for martingale
difference is useful.

On higher older properties of the EL estimates,
Newey and Smith (2004) show us some theoretical
advantages. Especially, the EL estimates asymptotic
bias does not grow with the number of moment
restrictions, while the bias of GMM often does. This
property is important for the condition of our method,
since many unconditional moment restrictions come
out when we approximate the conditional moment
restrictions by sequences of unconditional moment
restrictions. For this reason, we will perform a Monte
Carlo simulation to examine this theoretical advantage
in the section 5.
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4 GMMWITH A CONTINUUM OF MOMENT
CONDITIONS

In the next section, we conduct some simulations for
the case of the EL method and the GMM with a
continuum of moment conditions (C-GMM). Using
the C-GMMwe can resolve the problem of covariance
matrix singularity in the regular GMM, and utilize the
information in the continuum of moment conditions
fully.

The regular GMM estimate is de�ned as

�θT = argmin
θ
G
0
WG

where G represents a set of sample mean of moment
conditions, and W is a weight matrix. The C-GMM
estimate is de�ned similar to the regular GMM, but the
set of sample mean of moment conditions G and the
weightW are not matrix, they will be in an integration
form. C-GMM is based on the arbitrary set of moment
conditions

Eθ0 [ht({;θ0)]

� Eθ0 f[ψ(ωjθ0;Xt)� exp(iωXt+τ)]exp(iηXt)g
= 0

where { = (ω;η) 2 R2. Except the instrument
exp(iηXt) and complex number representation, this
form is similar to the counterpart of eq.(4). Carrasco
et al (2004) de�ned covariance operator K as

K f ({1) =
Z
k({1;{2) f ({2)π({2)d{2

with

k({1;{2) = Eθ0
h
ht({1;θ0)ht({2;θ0)

i
:

They constructed an estimate of the covariance
operator K; KT . Since the inverse operator of K is
not bounded, they construct an regularized version of
the inverse operator:�

KαT
T
��1

=
�
K2T +αT IT

��1KT
where αT is a penalizing term, and IT is the T � T
identity matrix. Then a inner product is de�ned as

h f ;gi=
Z
f ({)g({)π({)d{

where π(�) is some density function on R2. Using
these de�nitions, they de�ne the optimal C-GMM
estimate as

�θT = argmin
θ




�KαT
T
��1=2 �hT ({;θ)


 : (8)

Moreover they introduce a feasible alternative
representation of eq. (8) as

�θT = argmin
θ
V̄
0
(θ)
�
αT IT +C2

��1V (θ)

where V = [ν1; � � � ;νT ]
0 with

νt(θ) =

�hT ({;θ);ht({; �θ 1T )� ;

and C is a T �T matrix with (i; j) element ci j=(T �
1); i; j = 1; � � � ;T with

ci j =


hi({; �θ 1T );hi({; �θ 1T )

�
where �θ 1T is a T 1=2-consistent �rst step estimate of θ0.

Due to the regularized version of the inverse and the
integration form the operator has, we can resolve the
problem of covariance matrix singularity in regular
GMM and utilize the information in the continuum of
moment conditions fully to increase the ef�ciency of
the estimate.

5 SIMULATION

To examine the theoretical advantage on the higher
order properties of EL estimates mentioned above, we
perform a Monte Carlo simulation, estimate a scalar
CIR process, a scalar Vasicek with exponential jumps
process by the Maximum Likelihood Estimate (MLE
for CIR only), EL and C-GMM. Since the transition
density function of CIR is known, we can perform the
Maximum Likelihood Estimation, and check how far
the other estimates are from the MLE.

5.1 Model and data generate method

In this subsection, we describe some summaries on
the CIR model and Vasicek with exponential jumps
model, and show the way to generate the data series.

5.1.1 CIR model

Since the introduction by Cox et al (1985), the CIR
model has been used to model interest rates and
volatility of asset returns. We represent the CIR model
as follows

drt = (δ �κrt)dt+σ
p
rtdWt :

The transition density function of CIR is known;

f (rt+τ jrt ; t � 0)= ce�c(u+rt+τ )(
rt+τ

u
)q=2Iq(2c

p
urt+τ);

where c = 2κ=(σ2(1 � e�κτ)); u = rte�κτ ; q =
2δ=σ2� 1 and Iq(�) is the modi�ed Bessel function
of �rst kind of order q. It is known that 2crt+τ jrt �
χ2(2q+ 2;2cu) is non-central chi square with 2q+
2 degrees of freedom and 2cu noncentrality. As
mentioned above, we can obtain the CCF of CIR by
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solving the associated KBE. The CCF of CIR model
is as follows:

ψ(ωjθ ;rt) =
�
1� iω

c

��2δ=σ2

exp

"
iωe�κ

1� iω
c
rt

#
;

here we set τ = 1. Following Aït-Sahalia (2002) we
set the true values of the parameters as δ = 0:03; κ =
0:5; σ = 0:15: According to Aït-Sahalia (2002), these
values are realistic for US interest rates. In Monte
Carlo simulation, we obtained the data by generating
random numbers from χ2(2q+2;2cu).

5.1.2 Vasicek with exponential jumps model

Vasicek with exponential jumps model is proposed
by Das and Foredi (1996). Generally it is used as a
interest rates model. The model is comprised by the
Vasicek process and a jump process. The jump size
is determined by the absolute exponential distribution
variable and the sign of jump by a Bernoulli variable.
Carrasco et al (2004) performed a simulation for
the scalar Vasicek with exponential jumps process
to check the �nite sample properties of C-GMM.
Following the notation of Carrasco et al (2004), the
model equation is

drt = (δ �κrt)dt+σdWt + JtdNt ; (9)

jJt j � EXP(α);
sign(Jt)� BIN(β );

Nt � POI(λ ):

where θ = (δ ; κ; σ ; α; β ; λ )0 is the parameter
vector. For simplicity we set β = 1 as Carrasco
et al (2004). By solving the associated KBE, Das
and Foredi (1996) gives the conditional characteristic
function ψ(ωjθ ;Xt)

ψ(ωjθ ;rt) = exp(A(ω)+B(ω)rt) (10)

A(ω) =
iωδ

κ
(1� e�κ)� ω2σ2

4κ
(1� e�2κ)

+
iλ (1�2β )

κ
[arctan(ωαe�κ)� arctan(ωα)]

+
λ

2κ
log
�
1+ω2α2e�2κ

1+ω2α2

�
B(ω) = iωe�κ :

where τ; which take value 1 in our simulation, is
omitted. Following Carrasco et al (2004), we set
parameter values, δ = 0:02949, κ = 0:00283; σ =
0:022; α = 0:1; λ = 0:28846.

There are many ways to generate data from this
process. We take a way which utilizing the solution

of eq(9)

r(t) =
δ

κ
+

�
r(0)� δ

κ

�
e�κt +σ

Z t
0
e�κ(t�s)dWt

+
t

∑
0
e�κ(t�s)Jt4Nt ; (11)

where 4Nt is the increment of Nt at time t. The
value of the third term of eq(11) follows Gaussian
distribution with mean 0 and variance

�
σ

Z t
0
e�κ(t�s)dt

�2
:

For the forth term, at �rst we generate a sequence
of the time points on which a jump occur, after then
generate the size for every time point respectively. It
is known that when the jump frequencies follow a
Poisson distribution, the jump time points follow an
associated exponential distribution.

5.2 Monte Carlo results

The results of CIR are reported in Table 1 and 2.
The sample size is n = 200 for Table 1, n = 500
for Table 2, and the number of replications is 500.
We show mean bias, median bias and RMSE for all
sets of estimates. The three methods almost achieved
the same ef�ciency as that of the MLE, and for the
parameter σ the EL remarkably outperformed the C-
GMM.

Table 1 CIR n=200
Mean Bias Median Bias RMSE

MLE
θ 0.0013 0.0007 0.0054
κ 0.0248 0.0147 0.1025
σ 0.0007 0.0007 0.0094

EL
θ 0.0015 0.0009 0.0053
κ 0.0347 0.0207 0.1000
σ -0.0003 -0.0008 0.0099

C-GMM
θ 0.0013 0.0006 0.0051
κ 0.0233 0.0099 0.0906
σ -0.0011 -0.0015 0.0130
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Table 2 CIR n=500
Mean Bias Median Bias RMSE

MLE
θ 0.0005 0.0002 0.0033
κ 0.0095 0.0032 0.0617
σ 0.0003 0.0005 0.0064

EL
θ 0.0004 0.0003 0.0030
κ 0.0149 0.0140 0.0570
σ -0.0001 -0.0003 0.0061

C-GMM
θ 0.0005 0.0001 0.0028
κ 0.0122 0.0040 0.0508
σ 0.0002 0.0006 0.0094

In case of the Vasicek with Jump model, since the
transition density function is unknown, we can not
perform the MLE estimation. Table 3 and 4 report
the results of EL and C-GMM. The sample size are
500 and 1000 for Table 3 and 4 respectively. We set
the number of replications to be only 100, due to the
simulations of the C-GMM for Vasicek with Jump are
extra burdensome. From the values of RMSE, we
can see that the EL outperformed the C-GMM for all
parameters. More over the mean bias and median bias
of the EL method are small than those of the C-GMM
for almost all parameters.

Table 3 Vasicek with Jump n=500
Mean Bias Median Bias RMSE

EL
θ -0.0062 0.0020 0.0248
κ -0.0012 -0.0009 0.0020
σ -0.0095 -0.0092 0.0136
α 0.1242 -0.0089 0.5074
λ -0.0376 -0.0716 0.1015

C-GMM
θ 0.0128 0.0097 0.0387
κ -0.0005 -0.0009 0.0026
σ -0.0203 -0.0220 0.0246
α 0.7177 0.4931 1.3111
λ 0.1056 -0.0860 0.9991

Table 4 Vasicek with Jump n=1000
Mean Bias Median Bias RMSE

EL
θ 0.0090 0.0141 0.0196
κ -0.0007 -0.0004 0.0012
σ -0.0034 -0.0024 0.0099
α -0.0676 -0.1096 0.3447
λ -0.0312 -0.0521 0.1052

C-GMM
θ 0.0035 0.0004 0.0312
κ -0.0012 -0.0014 0.0018
σ -0.0142 -0.0220 0.0170
α 0.7292 -0.0707 1.1298
λ 0.1760 -0.0767 0.5001

These results suggest that the EL method has superior
performance for �nite sample, and surpasses the C-
GMM in some conditions.

6 CONCLUSION

We proposed a Maximum Empirical Likelihood
(EL) estimation method for non-i:i:d: continuous-time
models with known functional form of the conditional
characteristic function by expanding the EL method
of Donald et al (2003). Our EL method fully take
one of the theoretical advantages on the higher order
properties that the MLE estimators have a smaller
asymptotic bias than some other methods in some
conditions. The Monte Carlo simulations showed
some evidences.
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